

Cyber Security PPP: Addressing Advanced Cyber Security Threats and
Threat Actors

Cyber Security Threats and Threat Actors Training - Assurance Driven

Multi- Layer, end-to-end Simulation and Training

D2.1: Emulated Components Generator Modules v1 †

Abstract: This deliverable provides a technical description of the design and the development
of the functionalities of the Emulation Tool that support the generation of the emulated
components. It represents the results of the first iteration of task T2.1 activities.

Contractual Date of Delivery 31/08/2019
Actual Date of Delivery 31/08/2019
Deliverable Security Class Public
Editor Ernesto Damiani, Elvinia Riccobene,

Stelvio Cimato, Chiara Braghin, Claudio
Ardagna, Fulvio Frati, Sadegh Astaneh,
Lara Mauri (UMIL)

Contributors UMIL, FORTH, ATOS, ITML
 Quality Assurance Dirk Wortmann (SIMPLAN),
Oleg Blinder (IBM)

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 786890.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 2 August 31, 2019

The THREAT-ARREST Consortium
Foundation for Research and Technology – Hellas (FORTH) Greece
SIMPLAN AG (SIMPLAN) Germany
Sphynx Technology Solutions (STS) Switzerland
Universita Degli Studi di Milano (UMIL) Italy
ATOS Spain S.A. (ATOS) Spain
IBM Israel – Science and Technology LTD (IBM) Israel
Social Engineering Academy GMBH (SEA) Germany
Information Technology for Market Leadership (ITML) Greece
Bird & Bird LLP (B&B) United Kingdom
Technische Universitaet Braunschweig (TUBS) Germany
CZ.NIC, ZSPO (CZNIC) Czech Republic
DANAOS Shipping Company LTD (DANAOS) Cyprus
TUV HELLAS TUV NORD (TUV) Greece
LIGHTSOURCE LAB LTD (LSE) Ireland
Agenzia Regionale Strategica per la Salute ed il Sociale
(ARESS)

Italy

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 3 August 31, 2019

Document Revisions & Quality Assurance

Internal Reviewers

1. Dirk Wortmann (SIMPLAN),
2. Oleg Blinder (IBM)

Revisions

Version Date By Overview
1.0 30/08/2019 UMIL Final version
0.7 28/08/2019 UMIL Deliverable update after internal review
0.5 30/07/2019 UMIL Deliverable ready for internal review
0.3 15/07/2019 UMIL Sections 2-3 added
0.2 25/06/2019 FORTH Appendix I and II
0.1 01/05/2019 UMIL First Draft

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 4 August 31, 2019

Executive Summary

This deliverable provides a technical description of the design and the development of the
functionalities of the Emulation Tool that support the generation of the emulated components.

The set of Virtual Machines needed to deploy the cyber range infrastructure are automatically
created and configured starting from the Cyber Threat and Training Preparation (CTTP) model
file defined for the specific training scenario that the tool receives as input.

This deliverable is the result of the first iteration of task T2.1 activities.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 5 August 31, 2019

Table of Contents

1 INTRODUCTION ... 9

2 EMULATION TOOL INFRASTRUCTURE ... 10
2.1 EMULATION IN A CYBER RANGE-BASED TRAINING ENVIRONMENT .. 10
2.2 EMULATION TOOL INFRASTRUCTURE .. 10
2.3 OPENSTACK .. 11
2.4 HEAT.. 13

2.4.1 HEAT Resource Types ... 14
2.4.2 Example of HOT .. 16

3 EMULATION TOOL MODULES FOR COMPONENTS GENERATION.. 19
3.1 EMULATION CONTROLLER .. 19
3.2 EMULATION COMPILER ... 21

3.2.1 Compiler Algorithm .. 22
3.3 EMULATION ENGINE .. 24
3.4 RESULT .. 24

4 CTTP MODEL-DRIVEN EMULATION ... 28
4.1 DEVELOPMENT SUB-MODEL .. 28
4.2 EMULATION INSTANTIATION SCRIPT .. 29
4.3 EXAMPLE – SMART SHIPPING SCENARIO .. 29

4.3.1 Emulated component – The Captain’s PC .. 29
4.3.2 Scenario – Phishing email ... 29
4.3.3 CTTP model .. 30
4.3.4 Instantiation script 1 – Build template from the scratch ... 32
4.3.5 Instantiation script 2 – Deploy a pre-set template .. 32

5 CONCLUSION .. 33

REFERENCES .. 34

APPENDIX I – CTTP DEVELOPMENT SUB-MODEL SCHEMA ... 35

APPENDIX II – CTTP DEVELOPMENT SUB-MODEL FOR THE CAPTAIN’S PC............................... 37

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 6 August 31, 2019

List of Abbreviations

CTTP Cyber Threat and Training Preparation

HOT HEAT Orchestration Template

NaaS Networking-as-a-Service

OS Operating System

PAL Platform Level software

QCOW QEMU Copy-on-Write

REST Representational State Transfer

SAL Software Architecture Layer

SSH Secure Shell

SVG Scalable Vector Graphics

VM Virtual Machine

WP Work Package

XML eXtensible Markup Language

XSD XML Schema Definition

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 7 August 31, 2019

List of Tables
Table 1: OpenStack Resource Types used in the Emulation Tool (properties in bold are
required) ... 14

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 8 August 31, 2019

List of Figures
Figure 1: Emulation Tool Infrastructure .. 11
Figure 2: OpenStack core functionalities (OpenStack, 2019e) .. 12
Figure 3: HOT file structure (OpenStack, 2019d) .. 14
Figure 4: HOT basic template .. 17
Figure 5: Emulation Tool package structure .. 19
Figure 6: Emulation Controller REST interfaces. .. 20
Figure 7: emulation/getVMfromXML REST interface code. .. 20
Figure 8: emulation/getVMfromXML response values in the YAML format. 21
Figure 9: Example of XML input file .. 22
Figure 10: VM generation code. .. 23
Figure 11: Creation of the object clientV3 ... 24
Figure 12: Creation of the stack. .. 24
Figure 13: HOT YAML file ... 25
Figure 14: Stack topology. ... 26
Figure 15: OpenStack resources created. ... 27
Figure 16: The development sub-model schema .. 28

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 9 August 31, 2019

1 Introduction
The model-driven approach selected by the THREAT-ARREST Consortium enables the
development of high quality cyber ranges having the characteristics of being rapidly
reconfigurable and easily deployable. A completely manual configuration process is a complex
activity often leading to errors, not always representing the target operating environment, with
unpredictable timing (Pridmore, Lardieri, & Hollister, 2010). Furthermore, the combination of
tools provided by THREAT-ARREST (Training Tool, Assurance Tool, Emulation Tool,
Simulation Tool, Data Fabrication Platform) requires a complex preparation that can be done
only if relying on a pre-defined grammar that can be executed and validated by the tools
themselves. The interactions among the tools are already modelled in the language, and
functionalities and interfaces have already been put in place to be exploited. Indeed, Model-
Driven Development has emerged as one of the leading approaches for enabling rapid and
collaborative development: in our case, it provides an excellent communication mechanism to
align all the partners of the project, ensuring greater quality and more successful outcomes.

The objective of the work of task T2.1, described in this deliverable, is to provide the THREAT-
ARREST platform with a concrete tool for the deployment of a virtual training infrastructure,
based on the cyber range concept, which can be configured by trainers, by means of the Cyber
Threat and Training Preparation (CTTP) models, and used by trainees for hands-on real-world
cybersecurity exercise.

Indeed, with the Emulation Tool, the set of Virtual Machines (VMs) needed to deploy the cyber
range infrastructure is automatically created and configured starting from an eXtensible Markup
Language (XML) file defined for the specific training scenario that the tool receives as input.

In this deliverable we are going to provide a description of the technologies exploited for the
implementation of the Emulation Tool, namely OpenStack and HEAT, and of the Emulation
Tool package implemented by THREAT-ARREST in order to execute the automatic
translation, execution and deployment of the training scenario starting from CTTP models.

The deliverable is organized as follows. Section 2 provides an overview of the technologies the
Emulation Tool relies on to deploy the environment. Then, Section 3 describes our solution and
the algorithm used to move from a temporary XML file, based on the CTTP Model, to a YAML
file that can be used to deploy the training scenario. Section 4 provides an example of a use
case that will be further developed in the second iteration of the task activities. Finally, Section
5 gives our conclusions and two Appendixes detail the utilized CTTP files.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 10 August 31, 2019

2 Emulation Tool Infrastructure
In this Section, we provide an overview of the objectives and of emulation in a training
environment based on a cyber-range infrastructure, and a technical description of the solution
proposed as result of the activities of the task T2.1.

2.1 Emulation in a Cyber Range-based Training Environment
The TREATH-ARREST platform incorporates two technologies that covers different aspect of
modern cyber-ranges environments: simulation and emulation. Those technologies overlaps in
many aspects, and seminal works tried to differentiate between them. In (Davis & Magrath,
2013), cyber ranges are considered simulations if they use software models of real world objects
to explore behaviour, and they are labelled as emulations if they run real software applications
on dedicated hardware.

In the THREAT-ARREST project, we support this definition and we consider as simulated all
the components that do not need a direct interaction with the user in the fulfilling of their tasks.
“D5.2 – Simulated Components and network generator v1”, due at M12, will provide a
complete description of the architecture.

On the other side, all the nodes that require a direct interaction with the trainees, via Secure
Shell (SSH) console or Remote Desktop connections, are considered emulated and managed by
the Emulation Tool.

This approach allows to manage a complete and comprehensive set of training scenarios, where
all the approach (simulation and emulation) can be exploited individually or at the same time.
As for instance, in a mixed training scenario simulated nodes can create network traffic and
simulate attacks that trainees, accessing and controlling an emulated machine, can monitor and
apply countermeasures.

In the following sections we describe our solution for defining and deploying a cyber range
basing on emulated resources. This environment has also designed to incorporated and interact
with simulated nodes.

2.2 Emulation Tool Infrastructure
The Emulation Tool infrastructure allows the automatic compiling and deployment of the CTTP
model describing the training scenario in actual VMs to be used and accessed by trainers and
trainees. Furthermore, it also deploys VMs running the simulation software and provides a
control and monitoring infrastructure interacting with the other tools composing the THREAT-
ARREST platform.

The Emulation Tool connects via the APIs provided by OpenStack and HEAT frameworks. In
the following sections, we provide a description of the two frameworks, focusing on the
presentation of the HEAT Orchestration Templates (HOT) used to deploy the scenario. The
next figure outlines the main components of the Emulation Tool that will be detailed below.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 11 August 31, 2019

Figure 1: Emulation Tool Infrastructure

2.3 OpenStack
OpenStack (OpenStack, 2019) is an open source cloud computing platform. It consists of a
collection of interrelated software tools that control pools of processing, storage and networking
resources, which can be accessed through RESTful APIs with different language bindings (e.g.,
Python, and Java) and with common authentication mechanisms.

OpenStack has been chosen as reference architecture for the Emulation Tool thanks to its
widespread acceptance and its recognized leadership in the market of open source cloud
management infrastructures.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 12 August 31, 2019

Figure 2: OpenStack core functionalities (OpenStack, 2019e)

The modular composition of OpenStack allows its deployment in different infrastructures and
technical requirements. Different projects are developed independently to manage different
aspects of Cloud management, and they integrate together into a single product. Figure 2 depicts
the projects stack that composes the overall infrastructure.

In particular, the main projects that compose a basic OpenStack infrastructure are the following
(OpenStack, 2019e):

- Nova: it implements services and associated libraries to provide massively scalable, on
demand, self-service access to compute resources, including bare metal, virtual
machines, and containers.

- Neutron: it is a Software-Defined Networking project focused on delivering
networking-as-a-service (NaaS) in virtual computing environments. The exploitation of
Neutron as provider of the scenario’s virtual network will be provided in deliverable
D2.3.

- Horizon: it is the canonical implementation of OpenStack's dashboard, extensible and
providing a web based user interface to most OpenStack services.

- Keystone: it is the OpenStack service that provides API client authentication, service
discovery, and distributed multi-tenant authorization by implementing OpenStack’s
Identity API. It supports LDAP, OAuth, OpenID Connect, SAML and SQL.

- Swift: it is a highly available, distributed, eventually consistent object/blob store.
Organizations can use Swift to store lots of data efficiently, safely, and cheaply. It is
built for scaling and optimized for durability, availability, and concurrency across the
entire data set. Swift is ideal for storing unstructured data that can grow without bound.

- HEAT: this module orchestrates the infrastructure resources for a cloud application
based on templates in the form of text files that can be treated like code. HEAT provides
both an OpenStack-native REST API and a Cloud Formation-compatible Query API. It
also provides an auto-scaling service that integrates with the OpenStack Telemetry
services, so it is possible to include a scaling group as a resource in a template. HEAT
will be further examined in Section 2.4.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 13 August 31, 2019

OpenStack distributes DevStack, a development framework requiring less computational
resources, but providing, with some limitations, the developers with the same APIs and
functionalities of the full environment (OpenStack, 2019c). DevStack can be installed and
deployed in a single VM. At this stage of the implementation, the Emulation Tool will rely on
a DevStack environment.

2.4 HEAT
HEAT is an OpenStack project (OpenStack, 2019b) that implements an orchestration engine
allowing users to launch multiple composite cloud applications (called stacks) based on
templates (HEAT Orchestration Templates - HOTs) in the form of text files readable and
writable by humans that can be treated like code by the system. Furthermore, it provides
OpenStack API calls to generate running cloud applications. A HOT template allows the
creation of most OpenStack resource types (such as instances, networks and subnets, floating
IPs, volumes, security groups, users, etc.), as well as some more advanced functionalities such
as the possibility to configure software installed on the launched VMs. HOT templates are
defined following the YAML notation, readable and writable by humans, and follow the
structure outlined in Figure 3. More in detail, each HOT template has to include:

- the HEAT template version key with a valid version of HOT, indicating which version
of configuration the system has to consider. The version used in THREAT-ARREST is
the latest (2018-08-31).

- The parameters section, that includes all the configurations details that are already been
defined in OpenStack and will be used in the actual scenario. The value of each
parameter will be referred in the next sections of the file with the command get_param.

- The resources section, that contains the declaration of the resources to be deployed,
selected from the OpenStack Resource Types (OpenStack, 2019d) list specifying the
complete list of possible resources. Each resource type is defined indicating mandatory
and optional parameters. The subset of types used in this version of the prototype is
included in the subsection 2.4.1. The value of each resource subfield is referred in the
file using the command get_resource.

The templates allow the creation of most OpenStack resource types (such as instances, floating
IP addresses, volumes, security groups, users, etc.), as well as some advanced functionalities
such as instance high availability, instance autoscaling, and nested stacks.

HEAT primarily manages infrastructure, but the templates integrate well with software
configuration management tools such as Puppet (OpenStack, 2019f) and Ansible (OpenStack,
2019g), to manage scalable and reliable IT automation to OpenStack cloud deployments.
Furthermore, developers can customize the capabilities of HEAT by installing plugins.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 14 August 31, 2019

Figure 3: HOT file structure (OpenStack, 2019d)

The HOT ends with the output section, which specifies which values the developer asks to be
returned by the HEAT APIs when the deployment is completed. In general, returned values are
strings generated composing the values of parameters and resources using get_param and
get_resource commands.

2.4.1 HEAT Resource Types
Each resource has a name, a type, and a set of properties. Resource types are organized in
packages that clearly indicate the OpenStack project that will manage the instanced object. For
instance, VM nodes are defined using the resource type OS::Nova::Server, specifying the type
of component (Server) and the OpenStack project that will instantiate and manage the resource
(Nova).

In Table 1, we list the subset of resource types that are used by the Emulation Tool, indicating
for each one the main properties.

Table 1: OpenStack Resource Types used in the Emulation Tool (properties in bold are required)

Type Description Property

OS::Nova::Server

A Server resource
managing the
running VM
instance

flavor
The ID or name of the flavor to
boot onto. Flavor can be defined
in the file or directly in OpenStack

image
The ID or name of the image to
boot with.

key_name
Name of keypair to inject into the
server

name Server name.

port
ID of an existing port to associate
with this server

network
Name or ID of network to create a
port on

floating_ip ID of the floating IP to associate

fixed_ip
Fixed IP address to specify for the
port created on the requested
network

mac_address MAC address to give to this port

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 15 August 31, 2019

Type Description Property

user_data
User data script to be executed by
cloud-init

user_data_format
How the user_data should be
formatted for the server

OS::Neutron::Port

A virtual switch
port on a logical
network switch.
VM attach their
interfaces into
ports

network_id Network this port belongs to

mac_address
MAC address to allow through
this port

device_id Device ID of this port
name A symbolic name for this port

security_groups
Security group IDs to associate
with this port

subnet
Subnet in which to allocate the IP
address for this port

OS::Neutron::FloatingIP

Provide public IP
addresses to a
private cloud, or
used to have a
“static” IP address
reassigned when
VMs are upgraded
or moved

floating_network
Network to allocate floating IP
from

port_id
ID of an existing port with at least
one IP address to associate with
this floating IP

OS::Neutron::Net

A virtual isolated
layer-2 broadcast
domain, which can
be explicitly
configured to be
shared.

dns_domain
DNS domain associated with this
network

name
Symbolic name for the network,
which is not required to be unique

shared
Define whether this network
should be shared across all tenants

mtu
Maximum transmission unit
size(in bytes) for the network

segments Segments of this network

OS::Neutron::Subnet

A subnet
represents an IP
address block that
can be used for
assigning IP
addresses to virtual
instances

network The ID of the attached network

allocation_pools
The start and end addresses for the
allocation pools

cidr
The CIDR assigned to the subnet
(e.g. 10.10.10.0/24)

enable_dhcp
Set to true if DHCP is enabled and
false if DHCP is disabled

gateway_ip

The gateway IP address. If
omitted when creation, Neutron
will assign the first free IP address
within the subnet to the gateway
automatically

host_routes
A list of host route dictionaries for
the subnet

ip_version The IP version, which is 4 or 6
name The name of the subnet

OS::Neutron::Router

A physical or
virtual network
device that passes
network traffic
between different
networks

network
ID or name of the external
network for the gateway

enable_snat
Enables Source NAT on the router
gateway

name The name of the router

ha
Indicates whether or not to create
a highly available router

OS::Neutron::RouterInterface

Router interfaces
associate routers
with existing
subnets or ports

router The router

port Either subnet or port should be
specified subnet

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 16 August 31, 2019

Type Description Property

OS::Neutron::SecurityGroup

Sets of IP filter
rules that are
applied to an
instance’s
networking

description Description of the security group

name
A string specifying a symbolic
name for the security group,
which is not required to be unique

port_range_max The minimum and maximum port
number in the range that is
matched by the security group
rule

port_range_min

protocol
The protocol that is matched by
the security group rule. Valid
values include tcp, udp, and icmp

OS::Nova::Flavor

A resource for
creating
OpenStack virtual
hardware
templates

RAM Memory in MB for the flavor
vcpus Number of VCPUs for the flavor
disk Size of local disk in GB

name Name of the flavor

rxtx_factor

RX/TX factor, defining the
aggregate outbound bandwidth, in
megabits per second, across all
attached network interfaces

swap Swap space in MB

OS::Nova::KeyPair
A ssh key that can
be injected into a
server on launch

name The name of the key pair

public_key

Allows users to supply the public
key from a pre-existing key pair.
If not supplied, a new key pair
will be generated

2.4.2 Example of HOT
HOT files are defined using the YAML syntax, a human friendly data serialization standard for
all programming languages (YAML, 2019). YAML provides support for mappings
(hashes/dictionaries), sequences (arrays/lists), and scalars (strings/numbers).

While it can be used with most programming languages, it works best with languages that are
built around these data structure types, namely PHP, Python, Perl, JavaScript, and Ruby. One
of most visible features of YAML is that it does not allow the use of tabs. Spaces are used
instead, as tabs are not universally supported.

The most basic template that can be defined contains only a single compute instance. An
example is depicted in Figure 4, where a single resource is specified.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 17 August 31, 2019

Figure 4: HOT basic template

For the sake of simplicity, in this sample template a small instance has been deployed without
any connection to the network. Please note that the specification of the virtual network is
included in the deliverable “D2.3 – Interlinking of emulated Components module v1”.

In the figure above, the following fields has been used:

- image: specifying the image name of the virtual machine the system will deploy. This
image is a qemu image QCOW2 of the VM the system have to deploy. The image is
stored and indexed in the OpenStack repository.

- flavor: the flavor m1.small is one of the default flavors provided by default in
OpenStack that can be used for quick deploys. In this flavor, vcpus, disk and RAM have
been set at respectively 1 vcpu, 20GB and 2048MB. Other default flavors provided by
OpenStack are m1.tiny, m1.medium, m1.large and m1.xlarge.

- key: the public SSH key to be injected into the instance on launch, in order to access it
by connecting via SSH using the private key. The key has already been included in
OpenStack and referred using its ID.

- network: the VM must be connected at least to a network. In general, it is possible to
configure richer network topologies, by creating and configuring multiple networks and
subnets, and attaching virtual devices to ports on these networks.

To set up the minimal system, the YAML file will be specified as input to the Heat API, which
will take care of creating the VM instance and deploying it in the overall environment.

However, the scope of Heat is to deploy complex systems with multiple virtual machines and
networks connected with virtual routers. The resulting template objects cannot be directly
included in the CTTP models due to its intrinsic complexity and verbosity.

For this reason, the Emulation Tool has been designed to provide the user with mechanism and
interface to deploy complex systems starting from the CTTP Emulation sub-model, written in
XML, and give access to trainees and trainers to the deployed VMs via a simple web interface.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 18 August 31, 2019

In the following sections, an overview of the Emulation Tool prototype will be provided,
describing its structure and the compiling algorithm that has been used to produce the YAML
template starting from the (CTTP) XML file in input.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 19 August 31, 2019

3 Emulation Tool Modules for Components Generation
In this section, the software packages that compose the Emulation Tool are described in detail
and depicted in Figure 5. The work is the result of the first iteration of the tasks T2.1 and T2.3,
whose activities are strictly correlated.

For each package, a description of the technology and the algorithms are provided. Please note
that all the details about the generation of virtual networks are demanded to the deliverable
“D2.3 – Interlinking of emulated Components module v1”.

In the second iteration of task T2.1, the tool will be finalized using the CTTP Models developed
in the work package (WP) 3 for the definition of the training environment, and the second
version of the deliverable, due at M24, will contain a detailed description on how setting up the
images and the software contained in the use case virtual machines.

Figure 5: Emulation Tool package structure

3.1 Emulation Controller
The Emulation Controller is the module that manages the communication interface among the
Emulation Tool and the other tools that compose the THREAT-ARREST platform. Major
details on the communication among the tools are provided in deliverable “D2.4 – Emulation
Tool Interoperability Module v1”, due at M12.

The controller acts as the front door to the Emulation Tool. It provides a REST interface with
a set of methods that implement the creation and deployment of the virtual training scenario.
The model-driven approach of the THREAT-ARREST platform represents its core aspect and
each tool has been designed to execute their operation starting from their customized view of
the CTTP Model defined for a specific training activity. These views are called Sub-models and
are typical for each tool. A working example of the sub-model is provided in Section 3.2, but
this example is subject to be changed since the CTTP model is also will be finalized.

In the Emulation Tool, the Emulation Sub-model is requested as unique input for the deploying
of the training scenario, composed of virtual machines and networks (Figure 6). The interface
can be easily extended to supply additional services to the THREAT-ARREST tools,
integrating new methods in the Java code as shown in Figure 7.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 20 August 31, 2019

Figure 6: Emulation Controller REST interfaces.

Figure 7: emulation/getVMfromXML REST interface code.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 21 August 31, 2019

The interface shown in Figure 7, implementing the method that accepts an XML as input and
calls the Emulation Compiler to create and execute the YAML code. It exploits Swagger
(SmartBear, 2019), an open-source software framework backed by a large ecosystem of tools
that helps developers design, build, document, and consume RESTful Web services. Its toolset
includes support for automated documentation, code generation, and test-case generation.

The method, if the creation of the training scenario is successful, returns the set of credentials
needed to access the VM through the web based interface explained in the deliverable D2.3. If
during the execution exceptions occur, the method will return an error message. Figure 8
provides an example of the values returned in case of successful execution, indicating the name,
user and password needed to access the deployed VMs.

Figure 8: emulation/getVMfromXML response values in the YAML format.

3.2 Emulation Compiler
The Emulation Compiler is the module of the Emulation Tool responsible of translating the
CTTP Emulation sub-model, given as input to the Controller, in a valid HOT YAML file. The
final version of the CTTP model will be ready after the release of this deliverable, for this reason
we based our prototype on an input XML file including all the properties that will be specified
in the final CTTP model, even if the structure would be different. However, the chosen
implementation technique will allow the developer team to adapt it easily to the final schema.

Figure 9 shows the XML that the prototype takes as input. It describes a simple scenario with
two VMs, characterized by specific hardware properties (flavor), which share a common
network.

In the following, a description of the algorithm followed to create the YAML file is provided,
including code snippet to show the specific exploited technologies.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 22 August 31, 2019

Figure 9: Example of XML input file

3.2.1 Compiler Algorithm
The compiler algorithm is mainly composed of three steps:

1) Definition of the exploited parameters;

2) Definition of the OpenStack resources;

3) Definition of outputs.

Definition of the exploited parameters

Some of the variables indicated in the XML files or already included in OpenStack are referred
as variable.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 23 August 31, 2019

1) For each CustomVM, collect the values needed to define the flavour tuple <image, vcpu,
RAM, disk>;

2) Create the flavor based on the tuple using the command generateFlavor() and store it
in OpenStack, giving as name the composition of tuple values;

3) For each CustomVM, verify that the specified image is present in the OpenStack
repository, otherwise raise an error;

4) Get the ID of the public virtual network that provides access to internet;

5) Get the common key used to access the generated VMs;

Definition of the OpenStack resources

The following algorithm describes the specification of the single VM, without caring of the
network configurations that are included in the deliverable D2.3.

1) For each CustomVM, define a node of type OS::Nova::Server;

2) Add a line flavor: with the specified flavor, getting the specific parameter with the
command get_param:<flavor tuple>;

3) Add a line image: with the specified image, getting the specific parameter with the
command get_param:<image name>;

4) Add a line key: getting the specific parameter with the command get_param: <key
name>;

5) Add a line name: with the name of the VM;

6) If specified, add a line user_data: and include the script specified in the input; the script
will be run by the daemon cloud-init when the deployment of the VM is complete;

7) Put all the data in a HashMap variable, as shown in Figure 10;

8) Serialize the HashMap to generate the YAML file.

Figure 10: VM generation code.

Definition of outputs
The following algorithm describes the specification of output variables, needed by the tool for
the communication of username and password of VMs.

1) For each CustomVM

a. Add a line get_attr: applied to the list <name of VM resource>, first_address,
returning the name and private address of the VM;

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 24 August 31, 2019

b. Add a line get_attr: applied to the list <name of VM floating_ip resource>,
floating_ip_address, returning the name and floating ip address of the VM;

3.3 Emulation engine
The module works as interface of the OpenStack Java API (openstack4j) in order to allow
the deployment of the actual training scenario, starting from the template produced by the
Emulation Compiler (OpenStack4j, 2019).

The core of the OpenStack API for the creation of a new stack is the class OSClientV3,
included in the package org.openstack4j.api.OSClient. The class create and
authenticate a new client object, authorized to operate on the actual OpenStack installation.

Through the method getOsclientv3(), shown in Figure 11, the Engine call the OpenStack
Factory OSFactory requiring the creation of a new client.

Figure 11: Creation of the object clientV3

The object is then used to access the specific HEAT interface HeatService for the creation
of a new stack starting from a predefined YAML template, a given name, and a predefined
timeout in minutes (Figure 12).

Figure 12: Creation of the stack.

Furthermore, the Engine provides methods for the querying of the OpenStack instance, in terms
of already created flavors, images, networks, subnets, etc., and eventually their creation if
needed.

3.4 Result
The application of the Emulation Tool with the output specified in Figure 9 led to the definition
of the YAML presented in Figure 13, which takes into consideration only the parameters and
resources used for the definition of the VMs.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 25 August 31, 2019

Figure 13: HOT YAML file

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 26 August 31, 2019

The HOT has been then executed by the Emulation engine, as described in the subsection 3.3,
to deploy the scenario.

The successful conclusion of the process has been confirmed by the response of the REST
method, and can also be validated accessing the OpenStack framework and verifying if the new
stack is actually included in the list of the deployed stacks.

Figure 14 and Figure 15 give an evidence of the actual creation of the stack. In particular, Figure
15 reports the list of all the resources that have been deployed, where in particular we can find
the two VMs indicated in the XML: Threat-Arrest_vm1 and Threat-Arrest_vm2.

Figure 14: Stack topology.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 27 August 31, 2019

Figure 15: OpenStack resources created.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 28 August 31, 2019

4 CTTP Model-Driven Emulation

4.1 Development sub-model
The THREAT-ARREST platform operation will be driven by the Cyber Threat and Training
Preparation (CTTP) models. Among others, a CTTP model contains information regarding how
to instantiate the various platform modules and facilitate the training procedures. In this section
we provide an overview on how the CTTP Model will be incorporated and supported by the
Emulation Tool and how it can be used to implement a realistic training scenario. The CTTP
model will be fully supported in the final version of the Emulation Tool.

The development subset of a valid CTTP model determines the operational aspects of the pilot
system, how they can be deployed, and their connections. The following figure illustrates the
main elements of the development sub-model and Appendix I presents an initial version of its
schema. A relevant Scalable Vector Graphics (SVG) file has been uploaded in the project SVN.

Figure 16: The development sub-model schema

Every asset is disassembled into several components that describe its actual structure. These
components can model the Platform Level software (PAL) (i.e. operating system), the Software
Architecture Layer (SAL) (e.g. software applications), the HARDWARE modules, and how
these PAL/SAL/HARDWARE elements are connected and deployed. Each of these three
component types has a unique ID and a brief description, presenting to the user the main details
for the component.

The Deployment sub-model also determines the procedure of developing/instantiating the
component in the related platform tools. This may include the interoperation of real equipment
(administrated via the Assurance Tool) or emulation/simulation of it. The CTTP designer has
to define the relevant tool and how the platform can instantiate the component.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 29 August 31, 2019

In the Emulation Tool OpenStack infrastructure, at first, the designer has to implement the
various resources that will be instantiated for the training process. This includes system images
(software and OS settings), flavors (hardware characteristics), and networks (internal
connection of OpenStack resources or external communications). These primitives can be built
from the scratch or with the assistance of OpenStack tools. Once created, they can be utilized
by the various OpenStack services by referring to their alias name. Then, the CTTP designer
orchestrates the management of HEAT templates that deploy specific instances of these
resources.

4.2 Emulation instantiation script
In order to instantiate an emulated component, we have to provide a valid OpenStack script to
the Emulation Controller (see Section 3.1). For THREAT-ARREST, these scripts are described
in the HEAT YAML files (see Section 3.2). The Deployment sub-model contains the related
YAML script for every emulated component (to be instantiated by existing pre-set primitives).

At the current version, the information in the asset’s “description” and the related “instantiation
script” are correlated, but they are set separately and manually by the CTTP designer in order
to facilitate the implementation process.

As aforementioned, in OpenStack flavors define the hardware characteristics (compute,
memory, and storage) of a deployed computing unit, while the software aspects are determined
in a VM image (virtual disk with a bootable OS installed on it). Thus, the main Hardware
features of an emulated component are mapped in a flavor and the PAL/SAL features are
mapped in an image. Then, HEAT can instantiate VMs, which implement the functionality of
the emulated component, and orchestrate them.

4.3 Example – Smart shipping scenario
This section presents a complete example for modelling a simple emulated component for the
Smart Shipping scenario (Use Case 3) and how to instantiate it during a training session. The
interconnection of different emulated components is detailed in the related deliverable D2.3.
The use case described below will be fully supported and deployed in the final version of the
Emulation Tool.

4.3.1 Emulated component – The Captain’s PC
The emulated component is the Captain’s PC on the vessel. It facilitates the communication of
the Captain with the company’s headquarters. In this scenario, the user accesses the company’s
email via a web browser that runs on the PC and communicates with the back-office personnel
(e.g. receive weather broadcasts, report problems, etc.). The Internet connection is enabled via
a satellite connection (modelled as an external connection for OpenStack).

4.3.2 Scenario – Phishing email
This is a social engineering scenario which targets valuable actuators with moderate security
training (e.g. (Manifavas et al., 2014; Cesena et al. 2017; Ferrera et al. 2018)). Thus, an email
phishing attack is performed to a ship’s captain. The attacker sends bogus emails to the captain
and tries to mislead him/her in performing requested actions. The main goal is to make the

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 30 August 31, 2019

captain to update his/hers account credentials via a malicious (phishing) web site (thus, stealing
the actual username/password) or disclose other organization-critical information.

The scenario is implemented in the Emulation Tool. A web browser, which models the email
client service, is pre-installed in the VM that instantiates the captain’s PC. As the scenario is in
progress, the Captain/trainee receives emails originated from the organization’s back office (i.e.
weather broadcast, change route requests, update account credentials, etc.). The trainee has to
discriminate if the received messages are either faulty/malicious and ignore them or legitimate
and perform the designated actions.

4.3.2.1 Scenario propagation
All referred actions test the captain’s decision making:

 Legitimate email with the weather broadcast, denoting that the weather is good.

 Legitimate faulty email requesting route diversions due to bad weather conditions. The
email contains the details of another ship and was sent to the captain/trainee by mistake.

 Legitimate email requesting to ignore the previous (faulty) email and retain the initial
course.

 Malicious (phishing) email requesting to update the account’s password via a malicious
site, which resembles the original one. The message justifies that this urgent update is
ordered due to malicious activity that is monitored by the organization’s security officer
the last days. The email contains the actual name of the chief security officer, which
could have been mined by the attacker either by the information that is publicly available
for the organization or by other social engineering attempts.

4.3.2.2 Scenario modelling
For modelling the full scenario, we acquire the following VMs. The trainee operates the VM
for the Captain’s PC. The legitimate messages are sent by the VM that instantiates the backend
office PCs via the email server. The wile actions are performed through another VM that
deploys the malicious equipment (e.g. email client, phishing web site, etc.).

The emails will be sent either automatically based on triggered events (e.g. timestamps) or
manually by the trainer. Furthermore, the message types (legitimate, faulty, or malicious), as
they are defined for the aforementioned scenario, can be altered between different training
sessions. In this version, the VMs are communicating through Internet. In the following
subsections, we describe the CTTP model for the captain’s PC. The rest VMs can be deployed
in a similar fusion.

4.3.3 CTTP model
The code sample in Appendix II models the development sub-model for the aforementioned
asset in an XML format. The characteristics of the PC are described in the SAL, PAL, and
Deployment elements.

The physical characteristics (HARDWARE1) of the PC are:

- Hardware (part of the related OpenStack flavor definition)

o CPU: 2.4 GHz

o Core: 8

o Hard disk: 20GB

o RAM: 16GB

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 31 August 31, 2019

o Motherboard

o Graphics card

o Sound card

- Connectivity (part of the related OpenStack networks’ definitions)

o Ethernet

o WiFi/802.11ac

o USB ports

- Peripherals (not modelled for the emulation Deployment sub-model)

o Monitor

o Keyboard

o Mouse

o CD/DVD ROM

o Speaker

o Mike

The software characteristics (PAL1/SAL1) of the PC are (part of the related OpenStack image
definition):

- PAL1

o Operating System (OS): Windows 10

o Architecture: 64-bit

- SAL1

o Web browser: Internet Explorer

o Anti-virus: Windows Defender

The Deployment feature (DEP1) that is correlated with the PC is:

- PAL1/SAL1 runs on HARDWARE1 and connects to the Internet through the Satellite
connection Network

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 32 August 31, 2019

4.3.4 Instantiation script 1 – Build template from the scratch
At first, the CTTP designer has to build the underlying primitives (i.e. images, flavors, and
networks) or use the default ones that are provided by the OpenStack. Then, he/she can run the
instantiating HEAT template. The following piece of code describes how to deploy a pre-
existing VM image of the captain’s PC, as the Windows 10 iso
(windows_10_pro_iso_64_bit_iso_october_2018_update_v_1809) with the flavor m1.large (8
CPU cores, 20GB hard disk, and 16GB RAM) that has a satellite Internet connection (satellite-
conn).

The Emulator Controller will extract the ’template_script’ and create a file captain_pc.yaml’
that contains this deployment script for OpenStack, that the Emulation engine will execute on
the target platform.

4.3.5 Instantiation script 2 – Deploy a pre-set template
The next piece of code deploys a pre-set HEAT template of the captain’s PC (captain_pc.yaml),
which has been deployed in advance in our OpenStack installation.

The Emulator Controller will extract the ’template_name’ and the emulation engine will
execute it on the target platform.

<Instantiation>
<tool>Emulation</tool>

<template_name>captain_pc.yaml</template_name>
<installation_script>NO</installation_script>

</Instantiation>

<Instantiation>
<tool>Emulation</tool>
<template_name>NO<\template_name>
<installation_script>

<template_filename>captain_pc.yaml<\template_filename>
<template_script>
heat_template_version: 2018-08-31
 description: Simple template to an instance of the captain's PC,

which will be built from the scratch
 resources:
 my_instance:
 type: OS::Heat::SoftwareConfig
 properties:
 key_name: captain_pc
 image: windows_10_pro_iso_64_bit
 flavor: m1.xlarge
 networks:

- Network: satellite-conn
</template_script>

 </installation_script>
</Instantiation>

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 33 August 31, 2019

5 Conclusion
In this deliverable we provided an overview of the first round of activities of task T2.1 of the
“WP2 – Emulation Tool”.

The work has led to the development of a working prototype that manages the compiling and
execution of XML input models, describing the training scenario, in working HEAT templates,
and the execution of these templates in the OpenStack environment.

The technologies, and in particular the OpenStack framework, have been selected basing on the
conclusion of the “D1.3 – THREAT-ARREST platform’s initial reference architecture” and
“D1.2 – The platform system requirements analysis report”. The adoption of a modular and
extensible framework as OpenStack has allowed the implementation of a system able to support
all the emulated and simulated components.

The second round of the task activities, ending at M24, will be focused on the releasing of a
complete system strictly connected with the other THREAT-ARREST tools and, in particular,
with the full support of the project-specific CTTP Models.

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 34 August 31, 2019

References
[1] Cesena, M., et al. 2017. SHIELD Technology Demonstrators. CRC Press, Book for

Measurable and Composable Security, Privacy, and Dependability for Cyberphysical
Systems, pp. 381-434.

[2] Davis, J., & Magrath, S. (2013). A Survey of Cyber Ranges and Testbeds. Cyber and
Electronic Warfare Division - Australian Government. Retrieved from
https://apps.dtic.mil/docs/citations/ADA594524

[3] Ferrera, E., et al. 2018. IoT European Security and Privacy Projects: Integration,
Architectures and Interoperability. CRIStin – SINTEF, Next Generation Internet of
Things. Distributed Intelligence at the Edge and Human Machine-to-Machine
Cooperation. Book Chapter 7, pp. 207-292.

[4] Manifavas, C., et al., 2014. DSAPE – Dynamic Security Awareness Program
Evaluation. Human Aspects of Information Security, Privacy and Trust (HCI
International 2014), 22-27 June, 2014, Creta Maris, Heraklion, Crete, Greece,
Springer, LNCS, vol. 8533, pp. 258-269.

[5] OpenStack. (2019). OpenStack Open Infrastructure. Retrieved 2019, from
https://www.openstack.org/

[6] OpenStack. (2019b). Heat - OpenStack. Retrieved 2019, from
https://wiki.openstack.org/wiki/Heat

[7] OpenStack. (2019c). OpenStack docs: DevStack. Retrieved 2019, from
https://docs.openstack.org/devstack/latest/

[8] OpenStack. (2019d). OpenStack Resource Types. Retrieved 2019, from
https://docs.openstack.org/heat/stein/template_guide/openstack.html

[9] OpenStack. (2019e). Openstack Software. Retrieved 2019, from
https://www.openstack.org/software/project-navigator/openstack-components

[10] OpenStack. (2019f). Puppet OpenStack Guide. Retrieved from
https://docs.openstack.org/puppet-openstack-guide/latest/

[11] OpenStack. (2019g). OpenStack-Ansible Deployment Guide. Retrieved from
https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/

[12] OpenStack4j. (2019). Fluent OpenStack SDK for Java. Retrieved from
http://www.openstack4j.com/

[13] Pridmore, L., Lardieri, P., & Hollister, R. (2010). National Cyber Range (NCR)
automated test tools: Implications and application to network-centric support tools.
Proc. of 2010 IEEE AUTOTESTCON, (pp. 1-4). Orlando, FL, USA.
doi:https://doi.org/10.1109/AUTEST.2010.5613581

[14] SmartBear. (2019). Swagger tool for API development. Retrieved 2019, from
https://swagger.io/

[15] YAML. (2019). The Official YAML website. Retrieved 2019, from https://yaml.org/

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 35 August 31, 2019

Appendix I – CTTP Development sub-model Schema
This appendix presents an initial schema version of the CTTP development sub-model. The schema is
an XML Schema Definition (XSD) file and is also included in the SVN.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty">
 <xs:element minOccurs="0" maxOccurs="unbounded" abstract="true" name="CTTP_model">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="assets">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:string" use="required"/>
 <xs:element name="description" type="xs:string" use="required"/>
 <xs:element minOccurs="1" maxOccurs="1" name="component">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded " name="PAL">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:string" use="required"/>
 <xs:element name="description" type="xs:string" use="required"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="unbounded " name="SAL">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:string" use="required"/>
 <xs:element name="description" type="xs:string" use="required"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element minOccurs="0" maxOccurs="unbounded " name="HARDWARE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:string" use="required"/>
 <xs:element name="description" type="xs:string" use="required"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="unbounded " name="Deployment">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:string" use="required"/>
 <xs:element name="description" type="xs:string" use="required"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" maxOccurs="unbounded " name="Instantiation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="tool" type="xs:string" use="required"/>
 <xs:element name="template_name" type="xs:string" use="required"/>
 <xs:element name="installation_script" type="xs:string" use="required"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 36 August 31, 2019

 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence> </xs:complexType> </xs:element> </xs:schema>

THREAT-ARREST D2.1 DS-SC7-2017/№ 786890

THREAT-ARREST 37 August 31, 2019

Appendix II – CTTP Development sub-model for the Captain’s
PC

This appendix presents a first version of the CTTP development sub-model for instantiating the
Captain’s PC (see Section 5.3). The scripts for the two instantiation types (build form the scratch or
deploy a pre-set image) are detailed in Sections 5.3.3 and 5.3.4 respectively. The complete file has be
uploaded in the SVN.

<?xml version="1.0" encoding="UTF-8"?>
<!--CTTP Model for the Captain's PC -->
<CTTP_model xmlns="http://www.w3schools.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3schools.com file:///C:/CTTP_Model.xsd">
 <name>Smart_Shipping_CTTP</name>
 <assets>
 <id>ASSET1</id>
 <description>PCs/devices that facilitate the communication with the shiiping company backend (i.e.
the captain’s PC). The PC will emulate the typical software that is required for the captain (i.e. an email
service)</description>
 <component>
 <PAL>
 <id>PAL1</id>
 <description>The platform software for the captain’s PC: Windows 10 OS</description>
 </PAL>
 <SAL>
 <id>SAL1</id>
 <description>The application software for the captain’s PC: Mozilla Firefox web browser, Avira
anti-virus</description>
 </SAL>
 <HARDWARE>
 <id>HARDWARE1</id>
 <description>Captain's PC: Hardware (CPU 2.4 GHz, 50GB hard disk, 16GB RAM, motherboard,
graphics card, sound card), Connectivity (Ethernet, WiFi/802.11ac, USB ports), Peripherals (monitor,
keyboard, mouse, CD/DVD ROM, speaker, mike) </description>
 </ HARDWARE >
 <Deployment>
 <id>DEP1</id>
 <description>The satellite connection which enables the connection of the on-ship system with the
Internet</description>
 </Deployment>

<!--One of the two ‘Instantiation’ choices will be made by the CTTP designer-->
 <Instantiation>
 <tool>Emulation</tool>
 <template_name>NO</template_name>
 <installation_script>-- HEAT YAML Script / Subsection 5.3.3 --</installation_script>
 </Instantiation>
 <Instantiation>
 <tool>Emulation</tool>
 <template_name>-- HEAT YAML Script / Subsection 5.3.34 --</template_name>
 <installation_script>NO</installation_script>
 </Instantiation>
 </component>
 </assets>
</CTTP_model>

