

Cyber Security PPP: Addressing Advanced Cyber Security Threats and
Threat Actors

Cyber Security Threats and Threat Actors Training - Assurance Driven

Multi- Layer, end-to-end Simulation and Training

D2.3: Interlinking of Emulated Components Modules v1 †

Abstract: This deliverable provides a technical description of the design and the development
of the functionalities that support the generation of the virtual network infrastructure connecting
the emulated components generated by the Emulation Tool. This Deliverable is the result of the
first iteration of task T2.3 activities.

Contractual Date of Delivery 31/08/2019
Actual Date of Delivery 31/08/2019
Deliverable Security Class Public
Editor Ernesto Damiani, Elvinia Riccobene,

Stelvio Cimato, Chiara Braghin, Claudio
Ardagna, Fulvio Frati, Sadegh Astaneh,
Lara Mauri (UMIL)

Contributors UMIL, FORTH, ITML
 Quality Assurance Oleg Blinder (IBM),
 Vassilis Prevelakis (TUBS)

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 786890.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 2 August 31, 2019

The THREAT-ARREST Consortium

Foundation for Research and Technology – Hellas (FORTH) Greece
SIMPLAN AG (SIMPLAN) Germany
Sphynx Technology Solutions (STS) Switzerland
Universita Degli Studi di Milano (UMIL) Italy
ATOS Spain S.A. (ATOS) Spain
IBM Israel – Science and Technology LTD (IBM) Israel
Social Engineering Academy GMBH (SEA) Germany
Information Technology for Market Leadership (ITML) Greece
Bird & Bird LLP (B&B) United Kingdom
Technische Universitaet Braunschweig (TUBS) Germany
CZ.NIC, ZSPO (CZNIC) Czech Republic
DANAOS Shipping Company LTD (DANAOS) Cyprus
TUV HELLAS TUV NORD (TUV) Greece
LIGHTSOURCE LAB LTD (LSE) Ireland
Agenzia Regionale Strategica per la Salute ed il Sociale
(ARESS)

Italy

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 3 August 31, 2019

Document Revisions & Quality Assurance

Internal Reviewers

1. Oleg Blinder (IBM),
2. Vassilis Prevelakis (TUBS)

Revisions

Version Date By Overview
1.0 30/08/2019 UMIL Final version
0.7 28/08/2019 UMIL Deliverable updated after internal reviews
0.5 31/07/2019 UMIL Deliverable ready for internal review
0.3 15/07/2019 UMIL Draft contribution
0.2 21/06/2019 FORTH FORTH’s initial contribution
0.1 01/05/2019 Editor First Draft

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 4 August 31, 2019

Executive Summary

This deliverable provides a technical description of the design and the development of the
functionalities that support the generation of the virtual network infrastructure connecting the
emulated components generated by the Emulation Tool.

The activities of the first year have been dedicated to the definition of the mechanism to (i)
connect the emulated components defined in task T2.1 using a simple network and provide
access to them, and (ii) define the algorithms and rules to deploy complex network
infrastructures.

The work of this task has been strictly correlated with the activities of task T2.1.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 5 August 31, 2019

Table of Contents

1 INTRODUCTION ... 8

2 CTTP-MODEL DRIVEN EMULATION ... 9
2.1 NETWORKING CAPABILITIES ... 9

3 EMULATION TOOL INFRASTRUCTURE ... 11
3.1 NEUTRON .. 11
3.2 NEUTRON NETWORKING WITH HEAT ... 12

3.2.1 Floating IPs ... 16
3.3 APACHE GUACAMOLE ... 17

4 EMULATION TOOL MODULES FOR THE INTERLINKING OF COMPONENTS 20
4.1 EMULATION COMPILER ... 20

4.1.1 Network Topology Definition .. 20
4.1.2 Results ... 23

5 CONCLUSIONS .. 28

REFERENCES .. 29

APPENDIX I – HEAT TEMPLATE FOR THE SMART VESSEL ... 30

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 6 August 31, 2019

List of Abbreviations

CIDR Classless Inter-Domain Routing

CTTP Cyber Threat and Training Preparation

DMZ Demilitarized Zone

GRE Generic Routing Encapsulation

HOT HEAT Orchestration Template

IP Internet Protocol

OS Operating System

RDP Remote Desktop Protocol

SSH Secure Shell

TCP Transmission Control Protocol

UUID Universally Unique Identifier

VLAN Virtual Local Area Network

VM Virtual Machine

VNC Virtual Network Computing

VXLAN Virtual Extensible LAN

WP Work Package

XML eXtensible Markup Language

XSD XML Schema Definition

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 7 August 31, 2019

List of Figures
Figure 1 Smart vessel emulation in OpenStack ... 9
Figure 2: Emulation Tool Infrastructure. ... 11
Figure 3: Neutron minimal network. .. 12
Figure 4: YAML template describing the minimal network scenario. 16
Figure 5: Floating IP association. ... 17
Figure 6: Guacamole Protocol (Apache Foundation, s.d.) ... 17
Figure 7: Remote connection credentials returned by the Emulation Controller 18
Figure 8: Guacamole user and connection creation ... 19
Figure 9: Input XML for complex networks. ... 22
Figure 10: User-defined network and VMs connection shown by OpenStack interface. 23
Figure 11: YAML template related to the input XML in Figure 9. ... 27

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 8 August 31, 2019

1 Introduction

The interlinking of the emulated components plays a role of paramount importance in cyber
range training environments. In fact, trainees have to face real-world cybersecurity threats that
will be applied in virtual environments mimicking the real working environment (e.g. (Ferrera
et al., 2018; Hatzivasilis et al., 2017; Hatzivasilis et al., 2019; Cesena et al., 2017). This gives
them the possibility to improve their knowledge and to apply countermeasures to real attacks.

The Emulation Tool will embrace in full the model-driven approach of THREAT-ARREST.
The definition of the whole emulated environment, as well as the Virtual Machines (VMs)
interlinking system, is done by the compiling and execution of the Cyber Threat and Training
Preparation (CTTP) Emulation sub-model, i.e., a specific view of the CTTP model that takes
into consideration only the objects playing a role in the emulation infrastructure.

The objective of this deliverable is to describe the network aspect of the emulated environment
that has been defined in “D2.1 – Emulated components Generated Module v1”, giving an
overview of the technologies used in the development and of the algorithm that will drive the
final development of the Emulation Tool. In particular, this deliverable provides a technical
description of the design and the development of the functionalities that support the generation
of the virtual network infrastructure connecting the emulated components generated by the
Emulation Tool.

It is the result of the first iteration of task T2.3 activities, where we defined the rules for the
deployment of virtual networks inside the Emulation Tool, characterized by a complex topology
reflecting the topology of Pilots’ network, paving the way for the second iterations and the
updated version of the tool.

The deliverable covers also the interactions between the trainee (or the trainer) and the VM. A
specific tool, Apache Guacamole, has been introduced in the infrastructure and works as
transparent gateway providing them with a Secure Shell (SSH) or Remote Desktop connections
through a web page.

The deliverable is organized as follows. First, in Section 2 we give to the reader an overview
of the final use case, in order to introduce the context and the problem we had to face in order
to supply the emulated components with an actual network environment.

Then, in Section 3 we describes the frameworks needed to deploy it. We start from the
requirements and platform reference architecture analysis delivered by tasks T1.2 and T1.3 and
described in D1.2 and D1.3 released, respectively, at M4 and M6 of the project. Here,
OpenStack has been chosen has reference architecture for the emulated environment, basing on
it our activities.

Finally, Section 4 describe the algorithms that will drive the development of the Emulation Tool
in the second iteration of task T2.3, for what that directly concerns the deploying of the virtual
network infrastructure. Section 5 draws our conclusions. Appendix I details a HEAT template
that instantiates a smart vessel scenario that is detailed in the previous sections.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 9 August 31, 2019

2 CTTP-Model Driven Emulation

In this section, we present the application of the CTTP models, which will be described in the
deliverable D3.1, to the Emulation Tool. Please note that the complete syntax and structure of
the CTTP models will be considered for the implementation of version 2 of the Emulation Tool.

In the following, we present a use case that is directly connected with the use case presented in
Section 4 of D2.1. In fact, in the deliverable D2.1, we presented the process of instantiating
emulated components based on the CTTP model.

In brief, the model describes the hardware, software, and infrastructure primitives that are
required in order to implement the desired functionality for an emulated component. Installation
scripts are also included in the model, detailing how these components can be developed in
OpenStack.

This section further describes how to define the networking infrastructure of a modelled pilot
system. The modelling of the internal interaction between the emulated components and the
rest of THREAT-ARREST platform modules is also determined here, with the main
interconnection functionality being presented in D2.4.

2.1 Networking Capabilities
In OpenStack, we can model two main connection types: i) internal within the platform, and ii)
external communication. In the following example, we instantiate the emulated components of
a vessel for the Smart Shipping scenario (Use Case 3).

In the scenario, two VMs will be deployed. The first one represents the Captain’s PC (Windows
10 OS, 20GB hard-disk, 16GB RAM, Internet Explorer, Windows Defender anti-virus). The
modelling and deployment for this VM is detailed in the deliverable D2.1. The second instance
is the on-deck equipment (Ubuntu 19 OS, 20GB hard-disk, 16GB RAM, Jasima simulator).
This is a VM that runs the Jasima simulator (SimPlan AG, 2019) which simulates the ship’s
navigation modules and their on-deck monitors. The CTTP modelling of the simulation is
detailed in the deliverable D5.1 while the VM can be instantiated in a similar fashion as the
captain’s PC (deliverable D2.1).

In this example, we consider that the OpenStack modelling requirements for two VMs have
been completed on the basis of the description provided in the aforementioned deliverables (e.g.
images, flavors, network interfaces, etc.), and now, the goal is to deploy a network with them.

The two VMs are connected in a local network, which is formed as an internal connection in
OpenStack. Then, the Captain’s PC can communicate to Internet through a satellite link, which
is defined as an external OpenStack connection. Next figure depicts the deployed infrastructure
and the interconnection of the various components.

Figure 1 Smart vessel emulation in OpenStack

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 10 August 31, 2019

An example of template that can implement this infrastructure is detailed in Appendix I. This
template deploys the whole network in once and it can be included in the instantiation script for
an emulated vessel asset as described in the deliverable D2.1.

Alternatively, the two VMs can be instantiated individually, based on D2.1 and D5.2, but the
same internal (private) network configurations must be included in order to deploy their local
connection.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 11 August 31, 2019

3 Emulation Tool Infrastructure

OpenStack has been chosen as the foundation framework of the Emulation Tool for its
widespread diffusion and adoption, and for its modularity, which allows it to be applied for
multiple specific scenarios. Requirement analysis completed within the activities of the work
package (WP) 1 has selected it as the best candidate for the emulated environment (Figure 2).

Figure 2: Emulation Tool Infrastructure.

With respect to the virtual network management, two projects that are part of the OpenStack
framework will be mainly involved:

- HEAT, the OpenStack Orchestrator module, and

- Neutron, the virtual network management module.

In the following sections, a description of Neutron and HEAT, with respect to their role in the
Emulation Tool, are provided. It is important to note that the final objective of task T2.3
activities is to give to trainees a real-world virtual environment with the same network
infrastructure they can find in their actual working environment.

3.1 Neutron
Neutron is an OpenStack project that provides specific APIs to supply “network connectivity
as a service” and that is in charge of the virtual network interfaces managed by other OpenStack
services, like for instance Nova VMs (OpenStack, 2019), allowing them to create, attach and
use virtual device interfaces to the networks.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 12 August 31, 2019

Furthermore, Neutron allows the creation of complex virtual network topologies supplying
specifying objects abstractions to manage subnets, routers, firewall, load balancers, and virtual
private networks. Each abstraction has a functionality that mimics its physical counterpart:
networks contain subnets, and routers route traffic between different subnets and networks.

Neutron also supports Security Groups. A Security Group defines the set of network operations
the associated object can apply to the network. A VM can belong to one or more groups, and
the network layer applies the rules in those security groups to block or unblock ports, port
ranges, or traffic types for that VM.

Neutron has strict interactions with other OpenStack modules to manage specific aspects of
networking, namely:

- OpenStack Identity service (Keystone), used for authentication and authorization of API
requests;

- OpenStack Compute service (Nova), used to plug each virtual network interface of the
VM into a network.

- OpenStack Dashboard (Horizon), used to create and manage network services through
the web-based graphical interface.

3.2 Neutron Networking with HEAT
OpenStack provides resource types specific of the Neutron module that can be exploited in
HOT templates to define custom networks, and plug virtual interfaces into them. Figure 3
depicts the structure of a minimal Neutron virtual network.

Figure 3: Neutron minimal network.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 13 August 31, 2019

Each VM is associated to one or more objects of type OS::Neutron::Port that virtualize network
interfaces functionalities. The ports will be interpreted by the VM as common network
interfaces, i.e. ethX in Linux.

Ports are connected to instances of type OS::Neutron::Net that provide connectivity within
projects. By default, they are fully isolated and are not shared with other projects. The following
types of network isolation and overlay technologies are supported by OpenStack and defined at
creation-time:

- Flat: all instances reside on the same network, which can also be shared with the hosts.
No Virtual Local Area Network (VLAN) tagging or other network segregation can take
place.

- VLAN: allows users to create multiple provider or project networks using VLAN IDs
(802.1Q tagged). Instances can communicate with each other across the environment
with dedicated servers, firewalls, load balancers, and other networking infrastructure on
the same layer 2 VLAN.

- Generic Routing Encapsulation (GRE) and Virtual Extensible LAN (VXLAN):
encapsulation protocols that create overlay networks to activate and control
communication between compute instances. A Networking router is required to allow
traffic to flow outside of the GRE or VXLAN project network. A router is also required
to connect directly-connected project networks with external networks, including the
Internet.

Networks can be easily partitioned using the type OS::Neutron::Subnet that enables the creation
of subnets, with a specific address pool, within a network.

Routers are then required to provide connectivity to the Internet through the External network.
The type OS::Neutron::Router allows instance creation. Each router is associated to an external
network and can be connected to one or more network using objects of type
OS::Neutron::RouterInterface.

The schema in Figure 3 is deployed trough HEAT using the template in Figure 4. Specific
information about the resource types and input parameters are provided in the deliverable D2.1.
The parameter public_net1 refers to the external network, already defined in OpenStack, which
gives access to Internet and is described by its Universally Unique Identifier (UUID).

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 14 August 31, 2019

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 15 August 31, 2019

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 16 August 31, 2019

Figure 4: YAML template describing the minimal network scenario.

The definition of complex networks requires the inclusion in the schema of multiple networks
and subnets, described by their own Classless Inter-Domain Routing (CIDR) and gateway
(along with additional optional parameters).

The communication among user-defined networks will be enabled interposing specific Linux
VMs, acting as routers, with port on both networks. These specific VMs will be configured with
the flag ip_forward active, and specific iptables rules to enable packet forwarding.

3.2.1 Floating IPs
OpenStack gives the opportunity to administrators to associate VMs with specific Floating IPs.
Each VM is characterized by one or more private Internet Protocol (IP) addresses, which are
used for communication between the instances. Floating IPs are public addresses that can be
used for communication with networks outside the cloud, including the Internet. Each
OpenStack installation manages a predefined number of Floating IPs that can be associated to
running VMs. They take address within the address space of the OpenStack installation and can
be accessed by external actors.

The platform performs an address translation from the floating IP address to the IP of the
associated port. This translation is fully transparent for the guest VM, which will manage its
own usual network interfaces.

In THREAT-ARREST, the Emulation Tool associates a Floating IP to each VM that is part of
the training scenario, in order to give direct access via SSH and Remote Desktop Protocol
(RDP) to the VM through the Guacamole web interface (see Section 3.3).

The following code snippet shows the section in the HOT template used to associate the floating
IP to a specific port using the OS::Neutron::FloatingIP resource type (Figure 5).

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 17 August 31, 2019

Figure 5: Floating IP association.

3.3 Apache Guacamole
Apache Guacamole (Apache Foundation, s.d.) is a web-based remote desktop gateway. It
provides access to remote systems exploiting SSH, RDP, Virtual Network Computing (VNC)
and other remote desktop protocols, allowing connection to any kind of operating systems
supporting the above protocols. It is distributed under the Apache Open Source license 2.0. The
Guacamole protocol provides a common entry point for different types of machine running
different types of remote desktop protocols. Its architecture makes it completely transparent for
the user that has only to connect to the Guacamole web page to gain access to the VMs
associated to her/his profile (see Figure 6).

The Emulation Tool exploits Guacamole as the gateway for the remote access to the VMs
instanced during the deployment of the training scenario. For each VM, when the deployment
of the training scenario is complete, the Emulation Tool creates a Guacamole user profile and
connects this profile with the specific remote machine using the communication protocol
indicated in the input eXtensible Markup Language (XML) file.

Then, the Emulation Controller returns the data shown in Figure 7, containing, for each
deployed VM, username and password needed to access the remote machine through the
Guacamole interface.

Figure 6: Guacamole Protocol (Apache Foundation, s.d.)

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 18 August 31, 2019

The Guacamole server is installed inside the Emulation Tool platform as a web application of
the internal Tomcat application server. It is accessible at the server access using the port 8088
(see Figure 7 below). The THREAT-ARREST tools that have to provide access to the deployed
VMs, once requested to the Emulation Controller the deployment of the training scenario, will
use the returned list to notify users on the username and password to be used, or directly open
the web page passing the parameters as Transmission Control Protocol (TCP) requests.

The Emulation Compiler creates one profile and the related connections for each created VM.
Figure 8 shows an excerpt of the code of the Compiler that manages the insertions of users and
connections to the Guacamole DB.

Figure 7: Remote connection credentials returned by the Emulation Controller

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 19 August 31, 2019

Figure 8: Guacamole user and connection creation

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 20 August 31, 2019

4 Emulation Tool Modules for the Interlinking of Components

In the following sections we provide an overview of the algorithms used in the Emulation
Compiler to define the networks elements inside the YAML template.

As indicated in the deliverable D2.1, the input XML file used for the initial prototype is not the
final CTTP sub-model that will be defined in WP3, but an initial description of all the objects
that will be deployed to instance the training scenario. In this deliverable, we describe the
creation and deployment of the network only through the Emulation Compiler.

The first iteration of the Emulation Tool implementation has been focused on the setting up of
the environment and the implementation of the emulated component generator, as result of the
task T2.1. During the activities of task T2.3, strictly related and interconnected with the task
T2.1, we focused on the designing of the algorithms for the management of the deployment of
complex virtual networks, and its integration in the Emulation Tool. At the time of writing,
emulated components are connected only through a simple flat network.

4.1 Emulation Compiler
This section describes the structure of the emulation compiler module and the algorithm and
the rules followed to convert the input XML file into HEAT YAML files to manage the virtual
network topology. The proposed algorithm is complementary with the procedures described in
the deliverable D2.1 for the creation and deploying of the VM inside OpenStack.

The complete template is then passed to the emulation Engine and applied to OpenStack for the
actual deployment.

4.1.1 Network Topology Definition
Network topologies in OpenStack are characterized by two main objects: networks and routers.
Simplifying, each network can communicate only through a node that acts as router.

Then, each network is associated to one or more subnets to allow IP addressing and
segmentation. Each subnet is characterized by a CIDR, that clearly defines the IP range, the
subnet mask (e.g., 10.10.0.0/24), and a gateway.

Routers between user-defined networks are represented by special Linux VMs that act as virtual
routers and enable packet forwarding. These VMs have virtual network interfaces (i.e., object
of type OS::Neutron::Port) plugged into the two connected networks, and they have the kernel
value net.ipv4.ip_forward set to 1 in order to enable the transmission of packets. The ports are
hence the mechanism used by the emulated components to communicate through the network
exploiting the common networking protocols (e.g., TCP, Ethernet, etc.). Under the point of
view of a VM (i.e. emulated component), a port is seen as and it is managed like a common
network interface.

Optionally, specific iptables rules can be indicated as user-data scripts to apply specific
forwarding rules. It is important to note that the OS::Neutron::Router type of OpenStack can
be associated to networks that have been declared as external, that is, to networks that are
directly connected to the host network with direct access to Internet. This limitation required
the use of special VMs to act as virtual routers1.

Taking the above requirements into consideration, the input XML file has been defined in the
following way (see Figure 9).

1 More advanced solutions or adaptation of the OS::Neutron::Router type will be investigated in the next version of the
deliverable.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 21 August 31, 2019

The first steps related to the definition of the VMs has already been described in the deliverable
D2.1. The following steps define the type and characteristics of the network topology.

As already described, the Emulation Compiler takes as input the XML file and executes the
following steps to create the YAML template:

1) Retrieve the Networks element in the file.

2) For each Network in Networks create an object of type OS::Neutron::Net:

a. use the value of the parameter id as name of the object.

3) For each Network in Networks create an object of type OS::Neutron::Subnet and collect
the sub-element cidr:

a. Assign to the object the name <network name>-subnet;

b. Create a parameter with name equal to the value of the parameter name and
value the string in val;

c. Valorize the properties cidr of the object Subnet with the value of the related
parameter cidr using the command get_param;

d. Create a parameter with name equal to the value of the parameter gateway and
value the string in val;

e. Valorize the properties gateway of the object Subnet with the value of the related
parameter gateway_ip using the command get_param;

f. Valorize the parameter network_id with the related object Net created at step 2)
with the command get_resource;

g. If the parameter is_externalhas value true, mark the network to be connected to
the common public network.

4) Retrieve the Routers element.

5) For each Router in Routers create an object of type OS::Nova::Server to act as virtual
router:

a. Use the standard router_flavor, key and router_image;

b. Add an element in the list within the property networks for both networks; use
the command get_resource applied to the string composed by <router id>-
<value of network1> and <router id>-<value of network2>

c. Create an object of type OS::Neutron::Port for the first connected network;

d. Associate to the parameter subnet-id the object Subnet with the command
get_resource: < value of network1>-subnet;

e. Associate to the parameter network-id the object Net with the command
get_resource: < value of network1>;

f. Associate the common security group with the command get_param: <security
group>;

g. Create an object of type OS::Neutron::Port for the second connected network;

h. Associate to the parameter subnet-id the object Subnet with the command
get_resource: < value of network2>-subnet;

i. Associate to the parameter network-id the object Net with the command
get_resource: < value of network2>;

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 22 August 31, 2019

j. Associate the common security group with the command get_param: <security
group>.

6) For each network marked as external:

a. Create an object of type OS::Neutron::Router with name external-router[i];

b. Associate the common external network assigning to the property network the
value of the parameter indicating the public network, using the command
get_param:<name of public network>;

c. Create an object of type OS::Neutron::RouterInterface with name external-
router[i]-interface

d. Assign the name to the property router_id;

e. Associate the subnet related to the marked network at the property subnet_id
with the command get_resource.

Figure 9: Input XML for complex networks.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 23 August 31, 2019

4.1.2 Results
The application of the algorithm above led to the production of the YAML template in Figure
11. The results are also shown in Figure 10, taken from the OpenStack Dashboard
administration interface.

In this image, it is possible to see clearly the user-defined networks (orange and green), the VM
acting as router between them, and the router connecting the demilitarized zone (DMZ) –
special local network configuration type – with the common public network (blue).

Figure 10: User-defined network and VMs connection shown by OpenStack interface.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 24 August 31, 2019

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 25 August 31, 2019

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 26 August 31, 2019

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 27 August 31, 2019

Figure 11: YAML template related to the input XML in Figure 9.

The algorithm can easily accommodate more complex topologies with several networks.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 28 August 31, 2019

5 Conclusions

In this deliverable, we provide a description of the algorithms and software for the definition of
complex networks inside OpenStack, to be used for the deployment of THREAT-ARREST
training scenario.

The deliverable is the results of the first iteration of task T2.3 and paves the way for the next
iteration and for the final version of the Emulation Tool due at M24. The flexibility and
modularity of the OpenStack network types give to developers the possibility to include in the
topology also real devices as IoT virtualized objects, in order to deploy training scenario based
on real-world devices (Merlino, et al., 2014).

The virtual network deployed through the input XML will allows all the emulated components
to establish and manage connections with each other, within the same virtual subnet.

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 29 August 31, 2019

References
[1] Apache Foundation, s.d. Apache Guacamole. [Online]

Available at: https://guacamole.apache.org/
[Consultato il giorno 2019].

[2] Cesena, M., et al. 2017. SHIELD Technology Demonstrators. CRC Press, Book for
Measurable and Composable Security, Privacy, and Dependability for Cyberphysical
Systems, pp. 381-434.

[3] Ferrera, E., et al. 2018. IoT European Security and Privacy Projects: Integration,
Architectures and Interoperability. CRIStin – SINTEF, Next Generation Internet of
Things. Distributed Intelligence at the Edge and Human Machine-to-Machine
Cooperation. Book Chapter 7, pp. 207-292.

[4] Hatzivasilis, G., et al., 2017. SecRoute: End-to-End Secure Communications for
Wireless Ad-hoc Networks. 22nd IEEE Symposium on Computers and
Communications (ISCC 2017), IEEE, Heraklion, Crete, Greece, 03-06 July 2017, pp.
558-563.

[5] Hatzivasilis, G., et al., 2019. MobileTrust: Secure Knowledge Integration in VANETs.
ACM Transactions on Cyber-Physical Systems – Special Issue on User-Centric
Security and Safety for Cyber-Physical Systems, ACM, vol. 4, issue 3, Article no. 33,
pp., March 2020.

[6] Merlino, G. et al., 2014. Stack4Things: Integrating IoT with OpenStack in a Smart
City context. Hong Kong, China, s.n.

[7] OpenStack, 2019. OpenStack Compute (Nova). [Online]
Available at: https://docs.openstack.org/neutron/latest/
[Accessed 2019].

[8] SimPlan AG, 2019. Discrete-event simulation library jasima. [Online]
Available at: https://www.simplan.de/en/software-2/jasima/
[Accessed 2019].

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 30 August 31, 2019

Appendix I – HEAT template for the smart vessel
The following HOT implements the smart vessel infrastructure, as described in Section 2.

heat_template_version: 2019-06-21
description: HOT template for two interconnected VMs (captain’s PC and on-deck equipment)

parameters:
 image_id:
 type: string
 description: Image Name
 secgroup_id:
 type: string
 description : Id of the security group
 public_net:
 type: string
 description: public network id (external OpenStack connection)

resources:
 private_net:
 type: OS::Neutron::Net
 properties:
 name: private-net
 private_subnet:
 type: OS::Neutron::Subnet
 properties:
 network_id: { get_resource: private_net }
 cidr: 172.16.2.0/24
 gateway_ip: 172.16.2.1
 router1:
 type: OS::Neutron::Router
 properties:
 external_gateway_info:
 network: { get_param: public_net }
 router1_interface:
 type: OS::Neutron::RouterInterface
 properties:
 router_id: { get_resource: router1 }
 subnet_id: { get_resource: private_subnet }

 VM1_port:
 type: OS::Neutron::Port
 properties:
 network_id: { get_resource: private_net }
 security_groups: [get_param: secgroup_id]
 fixed_ips:
 - subnet_id: { get_resource: private_subnet }
 VM1_floating_ip:
 type: OS::Neutron::FloatingIP
 properties:
 floating_network_id: { get_param: public_net }
 port_id: { get_resource: VM1_port }
 VM1:
 type: OS::Heat::SoftwareConfig
 properties:
 name: captain_pc
 image: windows_10_pro_iso_64_bit_iso_october_2018_update_v_1809
 flavor: m1.xlarge
 networks:
 - port: { get_resource: VM1_port }

THREAT-ARREST D2.3 DS-SC7-2017/№ 786890

THREAT-ARREST 31 August 31, 2019

 VM2_port:
 type: OS::Neutron::Port
 properties:
 network_id: { get_resource: private_net }
 security_groups: [get_param: secgroup_id]
 fixed_ips:
 - subnet_id: { get_resource: private_subnet }
 VM2:
 type: OS::Heat::SoftwareConfig
 properties:
 name: On-Deck_Equipment
 image: Ubuntu-Jasima
 flavor: m1.xlarge
 networks:
 - port: { get_resource: VM2_port }

outputs:
 VM1_private_ip:
 description: Private IP address of captain’s PC
 value: { get_attr: [VM1, first_address] }
 VM1_public_ip:
 description: Floating IP address of captain’s PC
 value: { get_attr: [VM1_floating_ip, floating_ip_address] }
 VM2_private_ip:
 description: Private IP address of on-deck equipment
 value: { get_attr: [VM2, first_address] }

