

Cyber Security PPP: Addressing Advanced Cyber Security Threats and
Threat Actors

Cyber Security Threats and Threat Actors Training - Assurance Driven

Multi- Layer, end-to-end Simulation and Training

D4.3: Training and Visualisation tools IO mechanisms v1 †

Abstract: This deliverable is the result of the first iteration of task T4.6 activities. It defines the
technical means and type of interfaces for interconnecting the Training and Visualisation Tools
with the relevant platform components such as with the Emulation Tool, the Simulation Tool
and the Gamification Tool. The document is the first version of the means of communications.
Its goal is to guide the Training and Visualisation Tools’ integration activities in the second
year of the project and proper interconnection with the other platform components.

Contractual Date of Delivery 31/08/2019
Actual Date of Delivery 31/08/2019
Deliverable Security Class Public
Editor Hristo Koshutanski (ATOS)

Contributors Torsten Hildebrandt (SIMPLAN),
George Bravos (ITML),
Ludger Goeke (SEA).

Quality Assurance Kristian Beckers (SEA),
Georgios Leftheriotis (TUV),
George Hatzivasilis (FORTH).

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 786890.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 2 August 31, 2019

The THREAT-ARREST Consortium
Foundation for Research and Technology – Hellas (FORTH) Greece
SIMPLAN AG (SIMPLAN) Germany
Sphynx Technology Solutions (STS) Switzerland
Universita Degli Studi di Milano (UMIL) Italy
ATOS Spain S.A. (ATOS) Spain
IBM Israel – Science and Technology LTD (IBM) Israel
Social Engineering Academy GMBH (SEA) Germany
Information Technology for Market Leadership (ITML) Greece
Bird & Bird LLP (B&B) United Kingdom
Technische Universitaet Braunschweig (TUBS) Germany
CZ.NIC, ZSPO (CZNIC) Czech Republic
DANAOS Shipping Company LTD (DANAOS) Cyprus
TUV HELLAS TUV NORD (TUV) Greece
LIGHTSOURCE LAB LTD (LSE) Ireland
Agenzia Regionale Strategica per la Salute ed il Sociale
(ARESS)

Italy

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 3 August 31, 2019

Document Revisions & Quality Assurance

Internal Reviewers

1. Kristian Beckers (SEA),
2. Georgios Leftheriotis (TUV),
3. George Hatzivasilis (FORTH).

Revisions

Version Date By Overview
0.7 27/08/2019 Editor Addressed the comments by FORTH and

SEA from the internal quality review
process

0.6 23/08/2019 Editor Addressed the comments by TUV and SEA
from the internal quality review process

0.5 07/08/2019 Editor, SIMPLAN Editor minor corrections before internal
review. SIMPLAN revision and corrections

to Section 4
0.4 07/08/2019 ITML ITML’s contribution to Section 3.1
0.3 06/08/2019 Editor ATOS’ contribution to Sections 1, 3, 4, 0
0.2 28/06/2019 SEA SEA’s contribution to Section 5
0.1 20/05/2019 Editor First Draft with ToC

Executive Summary

This document is the result of the first iteration of task T4.6 activities and reports the work
performed under the task by month 12 of the project. It steps on and extends the results of the
deliverable “D1.3 – THREAT-ARREST platform’s initial reference architecture” to define the
technical means and interfaces for interconnecting the Training and Visualisation Tools with
the relevant platform components such as with the Emulation Tool, the Simulation Tool and
the Gamification Tool.

The goal of this first version is to guide the Training and Visualisation Tools’ integration
activities in the second year of the project and proper interconnection with the other platform
components. Particularly, this document is related with the work package (WP) 6 activities on
system integration starting in month 13 of the project.

Importantly, this document has two other counterpart documents – the deliverables “D2.4 –
Emulation tool interoperability module v1” and “D5.3 – The Simulation component IO module
v1”. These two other deliverables address in a similar but complementary way the
interconnections of the other platform tools, and altogether provide an overall view of
THREAT-ARREST platform interconnections for year 1 of the project.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 5 August 31, 2019

Table of Contents

1 INTRODUCTION ... 9

2 MESSAGE BROKER AND REST COMMUNICATIONS... 10
2.1 MESSAGE BROKER-ENABLED COMMUNICATIONS ... 10

2.1.1 Standard RabbitMQ Message Flow .. 13
2.1.2 RabbitMQ Topic Exchange ... 14

2.2 REST COMMUNICATIONS .. 14

3 TRAINING TOOL INTERCONNECTIONS ... 16
3.1 SCENARIO INITIALISATION SEQUENCE OF COMMUNICATIONS ... 17
3.2 INTERCONNECTION WITH THE EMULATION AND SIMULATION TOOLS ... 18
3.3 INTERCONNECTION WITH THE GAMIFICATION TOOL ... 20
3.4 INTERCONNECTION WITH THE ASSURANCE TOOL .. 23

4 VISUALISATION TOOL INTERCONNECTIONS.. 24
4.1 INTERCONNECTION WITH THE EMULATION AND SIMULATION TOOLS ... 25
4.2 INTERCONNECTION WITH THE SIMULATION TOOL ON USER ACTIONS ... 26

5 GAMIFICATION TOOL INTERCONNECTION AND REST API .. 29
5.1 PROTECT REST API ... 29

5.1.1 Functionality for creating a PROTECT instance .. 29
5.1.2 Functionality for querying game result(s) ... 30

6 CONCLUSIONS .. 35

7 REFERENCES .. 36

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 6 August 31, 2019

List of Abbreviations
AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CoAP Constrained Application Protocol

CoRE Constrained RESTful environments

CTTP Cyber Threat and Training Preparation

DTLS Datagram Transport Layer Security

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

ISO International Organization for Standards

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

OASIS Organization for the Advancement of Structured Information Standards

QoS Quality of Service

REST Representational State Transfer

STOMP Simple Text Oriented Messaging Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VM Virtual Machine

WP Work Package

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 7 August 31, 2019

List of Figures
Figure 1 Basic steps to create an application with RabbitMQ ... 11
Figure 2 Sequence diagram for discovery operation .. 12
Figure 3 Sequence diagram for event subscription operation .. 12
Figure 4. Standard RabbitMQ message flow ... 13
Figure 5 The REST architecture and the supported operations ... 15
Figure 6: THREAT-ARREST Platform Components Interconnection – Training Tool View 16
Figure 7: THREAT-ARREST Sequence Diagram Scenario Initialization and Trainees’
Assessment ... 18
Figure 8: Training Tool Interconnection with Emulation and Simulation Tools 19
Figure 9: Training Tool Interconnection with Gamification Tool on the Game Play Status ... 21
Figure 10: THREAT-ARREST Platform Components Interconnection – Visualisation Tool
View ... 24
Figure 11: Interconnection of Visualisation Tool with Emulation and Simulation Tools 25
Figure 12: Interconnection of Visualisation Tool with Simulation Tool on User Actions 26
Figure 13: Example for an interconnection between the Training Tool and the Gamification
Tool .. 29

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 8 August 31, 2019

List of Code Examples
Code Example 1: RabbitMQ Java API for Training Tool Creation of Queue and Receiving
Messages of Cyber System Simulation State ... 20
Code Example 2: RabbitMQ Java API for Gamification Tool Topic Exchange Creation and
Message Publishing .. 22
Code Example 3: RabbitMQ Java API for Training Tool Creation of Queue and Receiving
Messages of Serious Games State .. 23
Code Example 4: RabbitMQ Java API for Visualisation Tool Topic Exchange Creation and
Message Publishing on User Actions ... 27
Code Example 5: RabbitMQ Java API for Simulation Tool Creation of Queue and Receiving
Messages of User Actions .. 28

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 9 August 31, 2019

1 Introduction
This deliverable defines the technical means and interfaces for interconnecting the Training and
Visualisation Tools with the relevant platform components such as the Emulation Tool, the
Simulation Tool, the Gamification Tool and the Assurance Tool. The document is the first
version of the means of communications and it will be used as a guideline in the second year of
the project to enable Training and Visualisation Tools interconnect with the other platform
components.

The Training Tool is a central component of the THREAT-ARREST platform, in charge of
offering functionality to both trainees, on selecting and performing training sessions, and
trainers, on setting up training scenarios and configurations. The Training Tool’s Dashboard
offers an integral Graphical User Interface (GUI) to the various platform components’
functionalities and specific interfaces. To achieve proper trainees’ performance assessment, the
Training Tool interconnects with the Simulation and Emulation Tools on the state of the cyber
system, simulated or emulated, and with the Gamification Tool on the state and results of
serious games played by trainees.

The Training Tool also interconnects with the Assurance Tool to initialise the monitoring of
the trainee’s actions against the actual cyber physical system of an organisation and get the
necessary data for Cyber Threat and Training Preparation (CTTP) programmes’ evaluation. The
Assurance Tool may retrieve and update CTTP models stored in the platform for this purpose.
It has the role of monitoring and assessing the security posture of the actual cyber system of an
organisation where the THREAT-ARREST training platform is used at. The Assurance Tool
has its own stand-alone GUI that will be integrated in the Dashboard in the next phase of the
project.

The Visualisation Tool is designed as a JavaScript library offering a flexible mechanism for
visualisation of the state of a cyber system in a training session. It allows (i) the definition of
visual components for each user role and (ii) linking these components to real-time information
from the simulated or emulated components of a cyber system. To this, the Visualisation Tool
interconnects with the Simulation and Emulation Tools of the THREAT-ARREST platform.

The document also covers the interconnection of the Training Tool with the Gamification Tool.
Section 3.3 presents message-broker-based communications and Section 5 REST-based
communications. The goal is to provide a more complete and integral view of the Training Tool
interconnections with the rest of the platform components.

As noted earlier, this deliverable has two other counterpart documents – deliverable D2.4
(THREAT-ARREST D2.4, 2019) and deliverable D5.3 (THREAT-ARREST D5.3, 2019) – and
altogether the three documents provide an overall view of THREAT-ARREST platform
interconnections for year 1 of the project.

For the convenience of readers and to facilitate material comprehension, we recall Section 2
across the three documents with the aim to have a more self-contained version of the documents.

The document is structured as following. Section 2 overviews the core means of communication
supporting the various platform components – communications via either a message broker or
Representational State Transfer (REST) interfaces. Section 3 presents in detail the Training
Tool interconnections with the other platform components, particularly with the Emulation,
Simulation, Gamification and Assurance Tools. Section 4 details the interconnections of the
Visualisation Tool with the Emulation and Simulation components. Section 5 describes the
Gamification Tool REST API, particularly the API for the game PROTECT. Section 6
concludes the document and outlines next steps of activities.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 10 August 31, 2019

2 Message Broker and REST Communications
This section describes the communication channels between the various platform components.
Two main options are supported via either a message broker or Representational State Transfer
(REST) interfaces (Fielding, 2000).

2.1 Message Broker-enabled Communications
Message-oriented protocols typically focus on providing asynchronous data transfers between
distributed devices (Hatzivasilis et al., 2018a; Hatzivasilis et al., 2018b; Lakka et al. 2019).
Their focus is on reliable messaging, including message buffers and Quality of Service (QoS)
facilities, controlled by centralized entities. By using the message broker-enabled
communication, messages are passed through a central server (the Broker), enabling one-to-
many and many-to-many interactions. This offloads the computational power needed for a
component to connect many different clients in order to exchange messages.

The Message Queuing Telemetry Transport (MQTT) (Banks and Gupta, 2014) is one such
message-oriented protocol, introduced by IBM in 1999 and recently standardized by the
Organization for the Advancement of Structured Information Standards (OASIS)1, as the
Internet of Things (IoT) developments brought it back into the limelight. It is also standardized
as by the International Organization for Standards (ISO) and the International Electrotechnical
Commission (IEC) as ISO/IEC 20922 (ISO/IEC, 2016). MQTT was designed as an extremely
lightweight publish/subscribe messaging transport, for small sensors and mobile devices,
optimized for high-latency or unreliable networks. A MQTT Broker is responsible for handling
and organizing all communications between the various devices/components. Messages are
published with specific topics, and each client can subscribe to various topics (though the
Broker may require username/password authentication before allowing subscription). Topics
are organized in a hierarchical manner, like the folder structure in a file system (e.g. “THREAT-
ARREST/CTTP/models” could be a topic where a component can subscribe to get updates on
the CTTP models). When a client publishes a message, the Broker then relays this message to
all clients which are subscribed to the message's topic. Thus, all interactions are asynchronous
and clients only communicate directly with the Broker. MQTT relies on the Transmission
Control Protocol (TCP) and secure deployments support the use of the Transport Layer Security
(TLS) protocol. The protocol is designed to be used even on lightweight devices, like mobile
devices and embedded systems where bandwidth is costly and minimum overhead required. It
uses a 2-byte fixed header to control everything and exchange data as byte stream. Therefore,
MQTT is being used widely in IoT settings.

The Simple Text Oriented Message Protocol2 (STOMP) is a simple text-based protocol with a
main goal to interoperate with message-oriented middleware. The protocol wire format is
suitable to allow any STOMP client to communicate with any message broker which supports
the protocol. The protocol runs on any TCP-enabled communications following well-defined
commands such as CONNECT, SEND, SUBSCRIBE, UNSUBSCRIBE, BEGIN, COMMIT,
ABORT, etc. Importantly, STOMP is designed for asynchronous message passing between
lightweight entities/clients coming from scripting languages such as Ruby, Python, Perl or
JavaScript. In such a client environment, simple operations are typically carried reliably such
as reliably sending single messages or consume messages on a given destination. STOMP can
be seen as an alternative to other open messaging protocols, such as the Advanced Message
Queuing Protocol (AMQP) (Luzuriaga et al., 2015), but covering a small subset of commonly
used messaging operations. Given its deign principles, STOMP has been a definitive choice for

1 OASIS: “MQTT 3.1.1 specification,” December 10, 2015, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
2 https://stomp.github.com/ ; http://stomp.github.io/stomp-specification-1.2.html

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 11 August 31, 2019

some THREAT-ARREST components’ communications such as those of the Visualisation
Tool.

The Advanced Message Queuing Protocol (AMQP) (Luzuriaga et al., 2015) is an open standard
for passing business messages between applications or organizations. AMQP is designed for
reliable communication via message delivery guarantee primitives, like at-most-one, at-least-
once, and exactly-one delivery, and it is built upon a reliable transport protocol, such as TCP.
The protocol consists of two core components that handle communication: the exchanges and
the message queues. Based on pre-defined rules, the exchanges route the messages to
appropriate queues, which can store the data and later send it to the receivers. It connects
systems, feeds business processes with the information they need and reliably transmits onward
the instructions that achieve their goals. The protocol is designed with more advanced features
in mind and has more overhead than MQTT. For this reason, AMQP is not preferred for
lightweight devices (e.g. mobile), while MQTT can be used almost anywhere. But in real world
application development, we may need AMQP for reliable message queue while having
lightweight devices to work with. Here is the point where RabbitMQ3 comes in.

RabbitMQ (Richardson, 2014; Lonescu, 2015) is lightweight and easy to deploy on premises
and in the cloud. It supports multiple messaging protocols (e.g. MQTT and AMQP). It can be
deployed in distributed and federated configurations to meet high-scale and high-availability
requirements. This implementation can be run on a wide variety of platforms. RabbitMQ can
potentially run on any platform that provides a supported Erlang4 version, from multi-core
nodes and cloud-based deployments to embedded systems. In particular, OpenStack supports
RabbitMQ as message queue service and use it in many of its modules5. Figure 1 illustrates the
basic steps for creating an application with RabbitMQ (Lonescu, 2015).

Figure 1 Basic steps to create an application with RabbitMQ

First, the components publish their profile information to the broker, including the relevant IP
address. The broker can be either local or remote, enabling cross-domain interaction. In order
to discover a component or service, the actuator sends a request message to all public
components through the broker, which implements the corresponding multicasting
functionality. The compatible entities respond to the request by sending descriptive metadata.

3 RabbitMQ: http://www.rabbitmq.com
4 https://www.erlang.org
5 https://docs.openstack.org/mitaka/install-guide-ubuntu/environment-messaging.html

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 12 August 31, 2019

Figure 2 Sequence diagram for discovery operation

Figure 2 illustrates a sequence diagram of the discovery operation. For asynchronous operation,
subscribe or eventing, the messages are passed through the broker. Figure 3 illustrates a
sequence diagram of the event subscription operation.

Figure 3 Sequence diagram for event subscription operation

RabbitMQ supports AMQP, MQTT, STOMP and WEBSOCKETS as message delivery
protocols. This means that consumer and producer services can be implemented not only by
using different platforms and languages, but also by different messaging protocols. It has a wide
community and we can find a rich documentation on many different programming languages,
such as Python, Java, PHP, JavaScript, Go, etc. (Richardson, 2014; Lonescu, 2015).

The most important features of RabbitMQ for the THREAT-ARREST project include the
guaranteed delivery and the message queue implementation (Lakka et al. 2019; Hatzivasilis et
al., 2019). To sum-up, we choose the RabbitMQ broker for the internal THREAT-ARREST
platform communications, as:

 It is an open source message queuing system.

 It constitutes an ideal choice for interoperability between applications and tools of
different protocols and between different programming languages.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 13 August 31, 2019

 The fact that we can publish messages into one environment via one protocol and
consume them via one or more other protocols (simultaneously if necessary).

 It is a popular open source message queuing system that implements the AMQP.

 It well describes all supported protocols and their purpose.

 There is an active community and RabbitMQ has been utilized in very different
application areas.

 RabbitMQ offers libraries/APIs available in many programming languages6 allowing,
with just a few lines of code, the creation of communication channels to a broker, the
creation of queues, and publishing and receiving messages on channels and queues
respectively.

 It is fully supported by OpenStack7 the underpinning technology of the THREAT-
ARREST Emulation Tool.

2.1.1 Standard RabbitMQ Message Flow
In the following, we will overview the basic message flow concept of RabbitMQ to facilitate
the presentation in the following sections. In RabbitMQ, the producer’s messages are not
published directly to a consumer but instead, the producer sends messages to an Exchange. An
Exchange is a message routing agent responsible for routing of messages to different queues.
An Exchange accepts messages from the producer application and routes them to message
queues with the help of header attributes, bindings, and routing keys (Johansson, 2015).

Figure 4. Standard RabbitMQ message flow

Figure 4 shows the standard RabbitMQ message flow. A producer application publishes a
message to a given (selected) Exchange. When the Exchange receives the message, it is
responsible for routing the message to an appropriate Queue(s). A Binding has to be set up

6 https://www.rabbitmq.com/getstarted.html
7 https://docs.openstack.org/mitaka/install-guide-ubuntu/environment-messaging.html

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 14 August 31, 2019

between a Queue and a given Exchange. In our case, there are bindings to three different Queues
from the given Exchange. The Exchange routes the message to the Queues according to the
Bindings specified. The messages stay in a Queue until they are handled by a consumer
application.

A Binding is a "link" that is set up to bind a Queue to an Exchange. A routing key is a message
attribute set up by the producer that allows an Exchange to look at this key and decide how to
route the message to Queues depending on the Exchange type.

There are four different types of Exchange that route messages differently using different
parameters and bindings setups. The most relevant to the THREAT-ARREST needs is the
Exchange of type Topic.

2.1.2 RabbitMQ Topic Exchange
A Topic Exchange routes messages to Queues based on wildcard matches between the routing
key specified in the message header and the routing pattern specified by the Queue binding
(Johansson, 2015). Given the routing pattern of each Queue binding, messages are routed to
one or many Queues.

The consumer indicates in which Topics is interested in, such as subscribing to a feed of a
specific THREAT-ARREST platform tool. The consumer creates a Queue and sets up a binding
with a given routing pattern to the selected Exchange. All messages with a routing key that
match the routing pattern are routed to the Queue and stay there until the consumer consumes
the message.

The routing key is a period (‘.’) delimited list of words, such as
EmulationTool.ehealthscenario1.vm1 which identifies all events of cyber system emulation that
are monitored at the Virtual Machine (VM) ‘vm1’ of the eHealth scenario.

A routing pattern of a Queue binding can contain an asterisk ‘*’ to indicate a match of words
in a specific position of the routing key. For instance a routing pattern for a Queue1 can be
.ehealthscenario1. indicating all events from the cyber system of the eHealth scenario
regardless of whether these are from simulation or emulation and regardless of what particular
VMs they originated from.

A hash/pound symbol ‘#’ indicates match on zero or more words. For instance a routing pattern
EmulationTool.# will match any routing keys beginning with EmulationTool resulting in
capturing all events from cyber system emulation regardless of the specific scenarios currently
used.

2.2 REST Communications
Nevertheless, except from the asynchronous communication through a broker, we also need
synchronous communication options where the various modules can exchange data directly.
Protocols that follow the REST architecture are adopted for this. RESTful implementations
typically use the Hypertext Transfer Protocol (HTTP). In general, the REST solutions follow a
request/response model, where a client may interact with the server using a subset of the HTTP
methods, namely using GET, PUT, POST and DELETE on the server's resources (see Figure 5
below). RESTful systems target interoperability, performance and scalability for increasing
resources consumption. They target reusability of components which can be managed or
updated without affecting the system as a whole, even while it is running.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 15 August 31, 2019

Figure 5 The REST architecture and the supported operations

For secure information transmission, the extension of the Hypertext Transfer Protocol Secure
(HTTPS) is widely-used. The pure communication protocol (HTTP) is safeguarded by
encrypting the data with the TLS protocol. However, HTTP/HTTPs are not appropriate for
lightweight applications with resource, bandwidth, and/or energy restrictions.

Thus, the Internet Engineering Task Force (IETF) Constrained RESTful environments (CoRE)
Working Group presented the Constrained Application Protocol (CoAP), now an IETF standard
(Shelby et al., 2014). CoAP is a specialized web transfer protocol for use with constrained nodes
and constrained networks in the IoT, aiming to maintain compatibility with the existing Internet
infrastructure, through simple proxies. The protocol is often referred to as “the HTTP for the
Internet of Things”. CoAP messages are transported over the User Datagram Protocol (UDP).
Moreover, basic publish/subscribe interactions are also supported, as, by extending the HTTP
GET method, a client can observe a specific resource. For security, CoAP applications support
the Datagram Transport Layer Security (DTLS).

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 16 August 31, 2019

3 Training Tool Interconnections
The Training Tool is the central component of the platform offering cybersecurity training
functionality to both trainees and trainers through a tailored to the THREAT-ARREST project
needs Dashboard and GUI. The Dashboard follows a co-design approach which involves both
technical partners in the project and use case partners to better address user experience and
interactions with the platform for cybersecurity training.

Figure 6 shows the THREAT-ARREST platform components interactions with a focus on the
Training Tool’s front-end (Web browser) and backend communications. The front-end offers
an integral view of the different platform components and their GUI. The GUI of the platform
components communicate with different back-ends of the respective components. All these
front-end communications are HTTP-based communications except for the Visualisation
Tool’s communications described in Section 4.

Figure 6: THREAT-ARREST Platform Components Interconnection – Training Tool View

The main Training Tool back-end interconnections are:

 Interconnection with the Emulation Tool on the state of the cyber system being
emulated. Such real time state or event information facilitates the user performance
assessment during hands-on training sessions.

 Interconnection with the Simulation Tool on the state of the cyber system being
simulated. Similar to emulation, the aim is to facilitate user performance assessment
with respect to the events/state of the simulated part of the cyber system.

 Interconnection with the Gamification Tool on the state and results of games played by
the trainees. Results of game plays will form part of the overall user assessment for a
given training scenario.

 Interconnection with the Assurance Tool to initiate the monitoring of trainee’s actions
against the real cyber system and obtain the information needed for the evaluation of
CTTP programmes.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 17 August 31, 2019

Given platform architecture results of year 1, the Training Tool’s front-end becomes a user
entry point to interact with other platform components, such as the Emulation Tool’s
Guacamole8 Remote Desktop Gateway (for hands-on training), the Gamification Tool’s serious
games for cybersecurity training (namely for social engineering training), and the Visualisation
Tool’s JavaScript engine for progressive in-browser visualisation of the state of cyber system
components (simulated/emulated).

3.1 Scenario Initialisation Sequence of Communications
Upon training scenario initialization, the sequence of communications for the THREAT-
ARREST platform has been analysed in detail, with respect to the sequence of the actions /
messages to be exchanged between the various components of the THREAT-ARREST
platform. The outcome of this analysis has been depicted in a detailed sequence diagram in
Figure 7. The THREAT-ARREST dashboard, the main component of the THREAT-ARREST
Training Tool, is responsible for the initialisation of all relevant components for each training
session and, consequently, responsible for the aggregation of all information regarding the
profiles and the assessment of the trainees.

In more detail, and according to the diagram, the first step in the communication process is
related to the acquiring of all necessary information from the CTTP modeler. Following that,
the Training Tool initializes the emulation and the simulation environments first; if needed, the
gamification environment is also initialized. After that, the Visualisation Tool is also initialized,
and lastly the Assessment Tool is initialized in order to provide real-time information to the
trainees and the trainers.

With respect to the above sequence of communications, the initialization of each tool is
performed by a dedicated REST API provided by each tool. In order to carry out the
initialisation, a CTTP model (or relevant part of it) is used as an input, along with information
about each training session; this information includes, among others, the session ID, the user
ID and the role ID.

8 https://guacamole.apache.org

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 18 August 31, 2019

Figure 7: THREAT-ARREST Sequence Diagram Scenario Initialization and Trainees’ Assessment

3.2 Interconnection with the Emulation and Simulation Tools
The Training Tool’s interconnections with the Emulation and Simulation Tools are particularly
characterised by the need for asynchronous and real time feedback on the state and events of
the simulated and/or emulated cyber system.

The RabbitMQ message broker was chosen as an architectural solution to the needs of the
platform. In the following, we will present how the Training Tool receives information states
from the cyber system emulation/simulation through the RabbitMQ-supported communications
channels.

We recall that both the Emulation and Simulation Tools each have a predefined Exchange agent
of type Topic at the RabbitMQ broker of the platform. These Exchanges are predefined and
created at deployment and set-up of the platform, and are in charge of routing all
communications of the corresponding tool (for all scenarios and training sessions) to other
platform components. We refer to deliverable D2.4 for details on the Emulation Tool message
routing through the broker, and to deliverable D5.3 for those of the Simulation Tool.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 19 August 31, 2019

In contrast to the predefined (static) Exchanges for publishing messages to the platform, the
Training Tool dynamically upon training scenario initialisation declares (creates) Queues at the
broker to listen to specific training session messages. Thus, Queues are dynamically declared
for each training session and bound to the corresponding predefined Exchanges of the
Emulation and Simulation Tools. Importantly, the binding key (pattern) of each Queue must
correctly refer to the structure of the routing key of the messages published to the selected
Exchange (refer to subsections 2.1).

Figure 8: Training Tool Interconnection with Emulation and Simulation Tools

Figure 8 shows how the Training Tool interconnects with the Emulation and Simulation Tools
through the message broker and how different queue binding keys can be used depending on
the needs or granularity of the referred cyber system components to receive messages on state
or events of the cyber system.

The essential aspect of such communications is the matching of the routing keys used by the
Emulation and Simulation Tools when publishing messages to the broker, and the pattern of the
binding key of each queue declared by the Training Tool.

We recall that the hash/pound symbol ‘#’ is a place holder for zero or more words of the
matching process, while the asterisk ‘*’ symbol is a placeholder for one word. Refer to the
RabbitMQ documentation9 for more details on the use of Topics.

9 https://www.rabbitmq.com/getstarted.html

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 20 August 31, 2019

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.DeliverCallback;

public class ReceiveCSSimulationState {

 private static final String EXCHANGE_NAME = "CS_Simulation_State";

 public static void main(String[] argv) throws Exception {

 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 String queueName = channel.queueDeclare().getQueue();

 String bindingKey = "SimulationTool.Energy_BruteForceSSH.TrSess_98374767.main-
Net.sensor1.#";

 channel.queueBind(queueName, EXCHANGE_NAME, bindingKey);

 System.out.println(" [*] Waiting for messages. To exit press CTRL+C");

 DeliverCallback deliverCallback = (consumerTag, delivery) -> {
 String message = new String(delivery.getBody(), "UTF-8");
 System.out.println(" [x] Received '" +
 delivery.getEnvelope().getRoutingKey() + "':'" + message + "'");
 };
 channel.basicConsume(queueName, true, deliverCallback, consumerTag -> { });
 }
}
Code Example 1: RabbitMQ Java API for Training Tool Creation of Queue and Receiving Messages

of Cyber System Simulation State

Code Example 1 shows how to use Application Programming Interface (API) of the RabbitMQ
Java library10 to declare a Queue bound to the Exchange for state of cyber system simulation
and receive messages from the queue.

After a queue is declared (channel.queueDeclare().getQueue()), the queue is bound to the
Exchange predefined for cyber system simulation state (channel.queueBind(queueName,
EXCHANGE_NAME, bindingKey)). The binding key used in the example is the following: String
bindingKey = "SimulationTool.Energy_BruteForceSSH.TrSess_98374767.mainNet.sensor1.#"

This binding key will make RabbitMQ route all messages on the state of sensor1 at the main
net simulated for the Scenario Energy_BruteForceSSH and for a training session
TrSess_98374767.

Similarly, one can use the example of Code Example 1 to create a queue for receiving messages
on the state of cyber system emulation using the predefined Exchange for the Emulation Tool
and a proper binding key.

3.3 Interconnection with the Gamification Tool
The Training Tool interconnects with the Gamification Tool for initialisation of games upon
training scenario initialisation and for getting results of games played by trainees for their
overall assessment. A REST API is defined by the Gamification Tool for these needs. Section
5 presents functionality provided by the REST API of the game PROTECT as available in the
first year of the project. Similar activities of other games’ API will follow in the second year of
the project.

10 https://www.rabbitmq.com/tutorials/tutorial-five-java.html

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 21 August 31, 2019

Information on the status that a game has been finished is identified relevant for the Training
Tool in order to make trainers timely informed on the trainee’s results. The RabbitMQ broker
is used to enable such asynchronous communication on the final state of a game that has been
played by the trainee.

Figure 9: Training Tool Interconnection with Gamification Tool on the Game Play Status

Figure 9 shows how the Training Tool interconnects with Gamification Tool through the
message broker. An Exchange of type Topic is predefined for the Gamification Tool that will
interface all communications of the Gamification Tool on the state of serious games played by
trainees.

The message routing key for all game state messages sent by the Gamification Tool has the
following structure:

GamificationTool.<ScenarioID>.<TrainingSessionID>.<GameID>

The constant GamificationTool is used to indicate the name of the THREAT-ARREST
platform component that is the source of the message. The <ScenarioID> refers to the
scenario identifier from the CTTP model. The <TrainingSessionID> refers to the identifier
of the training session as managed by the Training Tool/Dashboard. The <GameID> refers to the
instance of the game the status message refers to.

Upon a training session initialisation for a given scenario, the Training Tool dynamically
declares a Queue bound to that Exchange with a proper binding key. For instance, the binding
key (pattern) can be exactly the one following the routing key:

GamificationTool.<ScenarioID>.<TrainingSessionID>.<GameID>

In such case, all messages for a game ID in a given training session are received on the queue.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 22 August 31, 2019

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

public class EmitSeriousGameState {

 private static final String EXCHANGE_NAME = "Serious_Game_State";

 public static void main(String[] argv) throws Exception {

 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 try (Connection connection = factory.newConnection();
 Channel channel = connection.createChannel()) {

 channel.exchangeDeclare(EXCHANGE_NAME, "topic");

 String routingKey = "GamificationTool.EmailPhishing_RootKit.TrSess_98374767.PRO-
TECT_6352";
 String message = "GAME_PLAY_FINISHED";

 channel.basicPublish(EXCHANGE_NAME, routingKey, null, message.getBytes("UTF-
8"));
 }
 }
}

Code Example 2: RabbitMQ Java API for Gamification Tool Topic Exchange Creation and Message
Publishing

Code Example 2 shows how the Gamification Tool can use the RabbitMQ Java API to declare
an Exchange and publish messages to this exchange using the routing key structure defined
above.

The following routing key example is used: String routingKey =

"GamificationTool.EmailPhishing_RootKit.TrSess_98374767.PROTECT_6352". Messages with
that routing key indicate the state info of a game instance PROTECT_6352 for a training session
TrSess_98374767. In the example, the message of the game state is GAME_PLAY_FINISHED.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 23 August 31, 2019

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.DeliverCallback;

public class ReceiveSeriousGameState {

 private static final String EXCHANGE_NAME = "Serious_Game_State";

 public static void main(String[] argv) throws Exception {

 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 String queueName = channel.queueDeclare().getQueue();

 String bindingKey = "GamificationTool.EmailPhishing_RootKit.TrSess_98374767.PRO-
TECT_6352";

 channel.queueBind(queueName, EXCHANGE_NAME, bindingKey);

 System.out.println(" [*] Waiting for messages. To exit press CTRL+C");

 DeliverCallback deliverCallback = (consumerTag, delivery) -> {
 String message = new String(delivery.getBody(), "UTF-8");
 System.out.println(" [x] Received '" +
 delivery.getEnvelope().getRoutingKey() + "':'" + message + "'");
 };
 channel.basicConsume(queueName, true, deliverCallback, consumerTag -> { });
 }
}
Code Example 3: RabbitMQ Java API for Training Tool Creation of Queue and Receiving Messages

of Serious Games State

Code Example 3 shows how the Training Tool can use the RabbitMQ Java API for dynamic
declaration of a queue bound to the Exchange predefined for the serious games with a particular
binding key. The binding key used in the example is String bindingKey =

"GamificationTool.EmailPhishing_RootKit.TrSess_98374767.PROTECT_6352" that matches all
messages sent with the API example shown in Code Example 2.

3.4 Interconnection with the Assurance Tool
The Training Tool interconnects with the Assurance Tool through a REST API to initialise the
monitoring of a trainee’s actions against a real cyber system and obtain the information needed
for the evaluation of CTTP programmes. A preliminary version of the Assurance Tool’s REST
API is presented in the deliverable “D1.3 – THREAT-ARREST platform’s initial reference
architecture”. The current version of the Assurance Tool addresses mostly the monitoring
aspects of a target cyber system and produces the CTTP models stored in the Training Tool
repository. Given the project timeline, a more advanced version of API and interconnections
with the Assurance Tool will be defined in the second year of the project.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 24 August 31, 2019

4 Visualisation Tool Interconnections
The Training Tool’s Dashboard is the central component of the platform offering cybersecurity
training functionality to both trainees and trainers through a tailored to the project needs GUI.
The Dashboard is a user entry point to interact with other platform components such as with
the Emulation Tool’s Guacamole11 Remote Desktop Gateway (for hands-on training), the
Gamification Tool’s serious games for cybersecurity training (namely for social engineering
training), and the Visualisation Tool for the state of cyber system components, either simulated
or emulated. We note that both the Guacamole Desktop and the Gamification Tool’s serious
games have their own (managed) GUI which will be part of the overall Dashboard design and
layout. No specific visualisation support is required for those components. We refer to
deliverable D4.2 (THREAT-ARREST D4.2, 2019) for details on the GUI and concept of the
serious games.

The Visualisation Tool is a JavaScript engine for progressive in-browser visualisation of the
state of cyber system components. As such, the Visualisation Tool interconnects with the
Simulation Tool and Emulation Tool to receive real time information on the state of the cyber
system. We note that in case other state information is identified necessary for visualisation
during second year of the project from other components of the platform, these will follow the
interconnection means established in this document.

The Visualisation Tool’s interconnections with the Simulation and Emulation Tools are
particularly characterised by the need for asynchronous and real-time feedback on the state and
events of the simulated and/or emulated cyber system.

Figure 10: THREAT-ARREST Platform Components Interconnection – Visualisation Tool View

Figure 10 shows the THREAT-ARREST platform communications with a particular focus on
the Visualisation Tool communications with the message broker of the platform. The
Visualisation Tool communications with the message broker use the STOMP12 over
WebSocket. Refer to Section 2 for an introduction to STOMP protocol and rationale of
adoption. WebSocket enables web applications to handle bidirectional communications based

11 https://guacamole.apache.org
12 http://stomp.github.io/

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 25 August 31, 2019

on variable length frames (of messages), which makes it suitable for the use of STOMP protocol
on top13. We note that one of the aspects for choosing the RabbitMQ broker was the multi-
protocol support provided by the broker’s recent versions14. This decision addressed an
important interoperability issue on the protocol level (e.g. (Soultatos et al., 2019)) among the
THREAT-ARREST platform components.

4.1 Interconnection with the Emulation and Simulation Tools
The Visualisation Tool interconnects with the Emulation and Simulation Tools through the
means established by the message broker, similarly to the means established for the Training
Tool in Section 3.2. Upon a training session initialisation, the Visualisation Tool declares
Queues bound to the predefined Exchanges of the Emulation and Simulation Tools.

Figure 11: Interconnection of Visualisation Tool with Emulation and Simulation Tools

Figure 11 shows the Visualisation Tool interconnections with the Emulation and Simulation
Tools through the message broker, and in particular the different possible queue binding keys
depending on the needs or granularity of the referred cyber system components. The essential
aspect of such communications is the matching of the routing keys used by the Emulation and
Simulation Tools when publishing messages to the broker, and the pattern of the binding key
of each queue declared by the Visualisation Tool. The hash/pound symbol ‘#’ is a place holder
for zero or more words of the matching process, while the asterisk ‘*’ symbol is a placeholder
for one word exactly.

We refer to the Java API example of Code Example 1 of how the Visualisation Tool can create
dynamic queues and key bindings for the various cyber system components of a simulation run,
and receive messages of their state. For instance, the bindingKey of Code Example 1 could
be further detailed to include the currentTemperature attribute so that specific messages
regarding this attribute are routed to this queue.

String bindingKey =
"SimulationTool.Energy_BruteForceSSH.TrSess_98374767.mainNet.sensor1.currentTempe
rature";

13 http://jmesnil.net/stomp-websocket/doc/
14 https://www.rabbitmq.com/protocols.html

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 26 August 31, 2019

4.2 Interconnection with the Simulation Tool on User Actions
It has been identified in the course of the first year, that there is a need for the Simulation Tool
to receive actions performed by trainees on specific components/aspects of the cyber system
being simulated. The Visualisation Tool enables such user actions to be visualised, captured
and communicated to the Simulation Tool. The platform’s message broker means are used to
enable the Visualisation Tool to interconnect with the Simulation Tool.

Figure 12: Interconnection of Visualisation Tool with Simulation Tool on User Actions

Figure 12 shows how the Visualisation Tool interconnects with the Simulation Tool on the
performed user actions. An Exchange of the type Topic is predefined for the Visualisation Tool
that interfaces all communications of user actions by the Visualisation Tool for all scenarios
and training sessions. This Topic Exchange is created during set up of the platform and its initial
configuration.

In this context, it is important for the Visualisation Tool that all messages sent to the predefined
Exchange bear a well formed routing key. It was agreed to use the following structure of the
routing key:

VisualisationTool.<ScenarioID>.<TrainingSessionID>[.<CyberSystemComponentID>]+

All four elements of the routing key are mandatory and essential to determine the namespace
of the message.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 27 August 31, 2019

The constant VisualisationTool is used to indicate the name of the THREAT-ARREST
platform component source of the message. The <ScenarioID> refers to the scenario
identifier from the CTTP model. The <TrainingSessionID> refers to the identifier of the
training session and is managed by the Training Tool/Dashboard.

The <CyberSystemComponentID> refers to the identifier of a component of the cyber system
that is simulated, such as a sensorID, IoTHubID, NetworkNodeID, etc. The brackets with an
upper index plus “[..]+” indicate the expression “.<CyberSystemComponentID>” can be
repeated one or more times depending on the complexity of the cyber system to be simulated.
It is important to note that identifier information for the <CyberSystemComponentID> is
obtained from the CTTP model. In the next version of the deliverable a formal Backus-Naur
Form15 (BNF) specification will be provided.

The Simulation Tool, upon training session initialisation, dynamically declares Queues and
binds those to the predefined Exchange to receive messages of user actions performed. The
binding key of each Queue should properly refer to the routing key pattern, as discussed above.

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

public class EmitSimVisUserAction {

 private static final String EXCHANGE_NAME = "Sim_Visualisation_User_Actions";

 public static void main(String[] argv) throws Exception {

 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 try (Connection connection = factory.newConnection();
 Channel channel = connection.createChannel()) {

 channel.exchangeDeclare(EXCHANGE_NAME, "topic");

 String routingKey = "VisualisationTool.Energy_BruteForceSSH.TrSess_98374767. Main-
Net.Sensor1";
 String message = "USER_ACTION_DISABLE_SENSOR";

 channel.basicPublish(EXCHANGE_NAME, routingKey, null, message.getBytes("UTF-8"));
 }
 }
}
Code Example 4: RabbitMQ Java API for Visualisation Tool Topic Exchange Creation and Message

Publishing on User Actions

Code Example 4 shows the use of the RabbitMQ Java library/API to connect to a message
broker, declare an Exchange of type Topic and publish messages on user actions. In the
example, a message for a user action USER_ACTION_DISABLE_SENSOR is sent with a routing key
VisualisationTool.Energy_BruteForceSSH.TrSess_98374767.MainNet.Sensor1 indicating that
a trainee performed an action to disable sensor1 at the main net of the simulated cyber system.

15 https://en.wikipedia.org/wiki/Backus–Naur_form

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 28 August 31, 2019

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.DeliverCallback;

public class ReceiveSimVisUserActions {

 private static final String EXCHANGE_NAME = "Sim_Visualisation_User_Actions ";

 public static void main(String[] argv) throws Exception {

 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 String queueName = channel.queueDeclare().getQueue();

 String bindingKey = "VisualisationTool.Energy_BruteForceSSH.TrSess_98374767.Main-
Net.Sensor1";

 channel.queueBind(queueName, EXCHANGE_NAME, bindingKey);

 System.out.println(" [*] Waiting for messages. To exit press CTRL+C");

 DeliverCallback deliverCallback = (consumerTag, delivery) -> {
 String message = new String(delivery.getBody(), "UTF-8");
 System.out.println(" [x] Received '" +
 delivery.getEnvelope().getRoutingKey() + "':'" + message + "'");
 };
 channel.basicConsume(queueName, true, deliverCallback, consumerTag -> { });
 }
}
Code Example 5: RabbitMQ Java API for Simulation Tool Creation of Queue and Receiving Messages

of User Actions

Code Example 5 shows the use of RabbitMQ Java library/API to connect to a broker, declare a
queue bound to the Exchange of user actions and receive messages routed to the queue.
Particularly, the following binding key is used
VisualisationTool.Energy_BruteForceSSH.TrSess_98374767.MainNet.Sensor1 that matches
the routing key of the example in Code Example 4. In this case, the Simulation Tool will receive
all messages sent by the Visualisation Tool for user actions regarding sensor1 at the main net
simulation.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 29 August 31, 2019

5 Gamification Tool Interconnection and REST API
The Gamification Tool provides a REST API for the interconnection with the Training Tool.
An example for such an interconnection is shown in Figure 13 that outlines a communication
of the Training Tool with the gaming tool PROTECT. The first HTTP request represents the
functionality for the creation of a new PROTECT instance. The result or intermediate result of
a PROTECT game can be queried with help of the second HTTP request. A more detailed
description of the REST API functionality for PROTECT is provided in the subsection 5.1.

At the time this document is written, the second gaming tool AWARENESS QUEST is in its
conceptual phase. Because of that, no additional information regarding its API, compared to
D1.3 (THREAT-ARREST D1.3, 2019), can be provided at the moment. The specification of
the REST API of AWARENESS QUEST will be provided in a later deliverable.

Figure 13: Example for an interconnection between the Training Tool and the Gamification Tool

5.1 PROTECT REST API
This section discusses the REST API functionality for the gaming tool PROTECT. In this
context, Section 5.1.1 describes the functionality for the creation of a PROTECT instance.
Section 5.1.2 considers the querying of game results with different filter parameters. It should
be pointed out that these specifications of the REST API functionalities will be refined and
concretized in further stages of development of the Training and Gamification Tools.

5.1.1 Functionality for creating a PROTECT instance
In the following, the REST API functionality for the creation of a PROTECT instance is
described.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 30 August 31, 2019

Provided functionality

Functionality Resource URI (informal) HTTP
method

Creation of a new
instance of
PROTECT

Instantiations of the game
PROTECT

/gamification/protect/instantiations POST

HTTP request content data

Parameter name Type Necessity Description
senarioID String REQUIRED Scenario that defines the features for a game

of PROTECT.

trainingsSessionID String REQUIRED Trainings session in which a game of
PROTECT is played.

playerID String REQUIRED Unique identifier of the player

playerName String REQUIRED Name of the player

gameTime Integer REQUIRED Game time in minutes

difficultyLevel Integer REQUIRED Difficulty level with which the game is
played.
The value of the difficulty level corresponds
to a certain configuration of the game within
PROTECT.

cardDeckID String REQUIRED Unique identifier of the card deck that shall
be played.

specialPractice Boolean

REQUIRED Defines if Attack cards that have been solved
incorrectly in previous games of PROTECT
and the appropriate Defense cards shall
appear multiple times in the card deck.

 TRUE: The relevant card pairs shall
appear multiple times in the card
deck.

 FALSE: The relevant card pairs shall
not appear multiple times in the card
deck.

HTTP response content data

Parameter name Type Necessity Description
protectInstantiationID String REQUIRED Unique identifier of the created PROTECT

instance. This identifier corresponds to the
GameID that is used by the Message Broker
for the identification of the finish message
regarding a certain game of PROTECT (see
Section 3.3)

playerID String REQUIRED Unique identifier of the player for whom the
PROTECT instance has been created.

5.1.2 Functionality for querying game result(s)
This section considers the REST API functionality for querying game results of PROTECT
games. The provided functionality is described in the following table. The appropriate content

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 31 August 31, 2019

data for HTTP requests and HTTP responses that correspond to queries with different filter
parameters are described in the subsections 5.1.2.3 to 5.1.2.2.

Provided functionality

Functionality Resource URI (informal) HTTP
method

Query for results of
finished games of
PROTECT

Results of finished
games of PROTECT

/gamification/protect/results POST

5.1.2.1 Content data for querying the game results for a certain game
In this section, the content data for a query regarding the game result for a certain game of
PROTECT is specified. The Training Tool can perform such a query after it has been notified
by the Gamification Tool via the Message Broker (see subsection 3.3) that a certain game of
PROTECT has been finished.

HTTP request content data

Parameter name Type Necessity Description
protectInstantiationID String REQUIRED Unique identifier of an instantiation of

PROTECT for that the result shall be
returned.

HTTP response content data

Parameter name Type Necessity Description
gameResult Object

Data Type
REQUIRED Result of a game of PROTECT that

corresponds to the transferred ID of a
PROTECT instantiation.

 playerID String REQUIRED Unique identifier of the player of the game

 playerName String REQUIRED Name of the player of the game

 difficultyLevel Integer REQUIRED Difficulty level of the game.

 score Integer REQUIRED Points scored in the game

 outcome Boolean REQUIRED Information if the game has been won or
lost by the player

 unforcedErrors Array REQUIRED Identifiers of Attack cards that have been
solved incorrectly, although a correct
solution was possible.

 attackCardID String NOT
REQUIRED

Identifier of an Attack card that has been
solved incorrectly, although a correct
solution was possible.

 numberCorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
correctly during the game.

 numberIncorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
incorrectly during the game.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 32 August 31, 2019

5.1.2.2 Content data for querying the game results for multiple games
This section considers the content data for a query according the game results for several
finished games of PROTECT. The Training Tool gets the information which games of
PROTECT have been finished by the Gamification Tool via the Message Broker (see
subsection 3.3).

HTTP request content data

Parameter name Type Necessity Description
listProtectInstantiationIDs Array REQUIRED List of unique identifiers of PROTECT

instantiations for that the game results
shall be returned.

 protectInstantiationID String REQUIRED Unique identifier of an instance of
PROTECT

HTTP response content data

Parameter name Type Necessity Description
listResults Array REQUIRED List of all game results that correspond to

the transferred IDs of PROTECT
instantiations.

 gameResult Object
Data Type

REQUIRED Result of a game of PROTECT that
corresponds to a transferred PROTECT
instantiation ID.

 playerID String REQUIRED Unique identifier of the player of the
game.

 playerName String REQUIRED Name of the player of the game.

 difficultyLevel Integer REQUIRED Difficulty level of the game.

 score Integer REQUIRED Points scored in the game.

 outcome Boolean REQUIRED Information if the game has been won or
lost by a player.

 unforcedErrors Array REQUIRED Identifiers of Attack cards that have been
solved incorrectly, although a correct
solution was possible.

 attackCardID String NOT
REQUIRED

Identifier of an Attack card that has been
solved incorrectly, although a correct
solution was possible.

 numberCorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
correctly during the game.

 numberIncorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
incorrectly during the game.

5.1.2.3 Content data for querying the game result(s) for a certain player
The following specifications of content data consider a query of the game result(s) for a certain
player.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 33 August 31, 2019

HTTP request content data

Parameter name Type Necessity Description
playerID String REQUIRED Unique identifier of a player for whom

the game results shall be returned.

HTTP response content data

Parameter name Type Necessity Description
listResults Array REQUIRED List of all game results that correspond

to the transferred player ID.

 gameResult Object
Data
Type

NOT
REQUIRED

Result of a game of PROTECT that
corresponds to the transferred player ID.

 playerID String REQUIRED Unique identifier of the player of the
game

 playerName String REQUIRED Name of the player of the game

 difficultyLevel Integer REQUIRED Difficulty level of the game

 score Integer REQUIRED Points scored in the game

 outcome Boolean REQUIRED Information if the game has been won or
lost by a player

 unforcedErrors Array REQUIRED Identifiers of Attack cards that have been
solved incorrectly, although a correct
solution was possible.

 attackCardID String NOT
REQUIRED

Identifier of an Attack card that has been
solved incorrectly, although a correct
solution was possible.

 numberCorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
correctly during the game.

 numberIncorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
incorrectly during the game.

5.1.2.4 Content data for querying the game results for multiple players
This section specifies the content data for a query of the game results for multiple players.

HTTP request content data

Parameter name Type Necessity Description
listPlayerIDs Array REQUIRED List of unique identifiers of players for

whom the game results shall be returned.

 playerID String REQUIRED Unique identifier of a player of the game.

HTTP response content data

Parameter name Type Necessity Description
listResults Array REQUIRED List of all game results that correspond

to the transferred player IDs.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 34 August 31, 2019

Parameter name Type Necessity Description
 gameResult Object

Data
Type

NOT
REQUIRED

Result of a game of PROTECT that
corresponds to a transferred player ID.

 playerID String REQUIRED Unique identifier of the player of the
game.

 playerName String REQUIRED Name of the player of the game.

 difficultyLevel Integer REQUIRED Difficulty level of the game.

 score Integer REQUIRED Points scored in the game.

 outcome Boolean REQUIRED Information if the game has been won or
lost by a player.

 unforcedErrors Array REQUIRED Identifiers of Attack cards that have been
solved incorrectly, although a correct
solution was possible.

 attackCardID String NOT
REQUIRED

Identifier of an Attack card that has been
solved incorrectly, although a correct
solution was possible.

 numberCorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
correctly during the game.

 numberIncorrect
Solutions

Integer REQUIRED Number of Attacks that have been solved
incorrectly during the game.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 35 August 31, 2019

6 Conclusions
This document is version 1 of the “Training and Visualization tools IO mechanisms”
deliverable (version 2 will be included in the future D4.11 deliverable). It presents the means
of the Training and Visualisation Tools interconnect with the other platform components.
Different types of communication needs have been addressed such as synchronous vs
asynchronous through the REST API and message-broker-enabled communications,
respectively. The selected technologies realise the needed communication concepts and enable
a loose coupling between the tools which leads to an easier integration of the tools into the
THREAT-ARREST platform.

The goal of this first version is to guide the Training and Visualisation Tools integration
activities in the second year of the project, particularly how interconnections with the other
platform components will be addressed. We recall that this document has two other counterparts
that complement the overall view of components interconnections of the THREAT-ARREST
platform – deliverables D2.4 and D5.3.

The adoption of REST and RabbitMQ message broker allows us to address interoperability on
the API level but also interoperability on the protocol level (Cameron, 2012). For instance,
thanks to RabbitMQ, the Visualisation Tool (a JavaScript library running in a trainee’s browser)
can interconnect and exchange messages with the Emulation Tool which is running a different
message protocol. The Visualisation Tool adopted STOMP over WebSockets for browser-
based messages exchanges, while the Emulation Tool the AMQP (see Deliverable 2.4). Both
tools can seamlessly exchange messages even using different protocols.

Next steps in the second year of the project target to address:
 Technical description and specification of interfaces (APIs) for Training Tool and

Visualisation Tool communications with other platform components both through
REST API and those through RabbitMQ broker. We note that the technical specification
of such APIs is subject to the design and technical development of individual
component’s functionalities.

 Interoperability on the message level to ensure the syntax and semantics of messages
(e.g., log data from VMs of the emulation environment, or actions/events from cyber
system simulation, etc.) sent by the Emulation and Simulation Tools are processable by
the Training and Visualisation Tools.

We note that the concluding remarks and next steps are common to the three documents D2.4,
D4.3, and D5.3 as they altogether (in a complementary way) address the mechanisms and
interfaces for interconnecting all THREAT-ARREST platform components.

The steps above will be particularly driven by the activities of WP6 on platform integration and
interconnection, which officially start in month 13 of the project.

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 36 August 31, 2019

7 References
[1] Banks, A. and Gupta, R. (2014) OASIS Message Queuing Telemetry Transport (MQTT),

version 3.1.1, OASIS, pp. 1-81, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf .

[2] Cameron, B. (2012) The Polyglot Rabbit: Examples of Multi-Protocol Queues in RabbitMQ.
Available at http://assortedrambles.blogspot.com/2012/11/the-polygot-rabbit.html

[3] Fielding, Roy Thomas (2000). "Chapter 5: Representational State Transfer (REST)".
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
University of California, Irvine.
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[4] Hatzivasilis, G., et al. (2019). Secure Semantic Interoperability for IoT Applications with
Linked Data. IEEE Global Communications Conference (GLOBECOM 2019), IEEE,
Waikoloa, HI, USA, 9-13 December 2019, pp. 1-7.

[5] Hatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I. and Demetriou
G. (2018a) The Industrial Internet of Things as an enabler for a Circular Economy Hy-LP: A
novel IIoT Protocol, evaluated on a Wind Park’s SDN/NFV-enabled 5G Industrial Network,
Computer Communications – Special Issue on Energy-aware Design for Sustainable 5G
Networks, Elsevier, vol. 119, pp. 127-137.

[6] Hatzivasilis, G., et al., (2018b). The Interoperability of Things. 23rd IEEE International
Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD 2018), IEEE, Barcelona, Spain, 17-19 September 2018, pp. 1-7.

[7] ISO/IEC 20922 (2016). “Information technology – Message Queuing Telemetry Transport
(MQTT) v3.1.1,” June 15, 2016, https://www.iso.org/standard/69466.html .

[8] Johansson, L. (2015) RabbitMQ Exchanges, routing keys and bindings. CloudAMQP Blog.
Available at https://www.cloudamqp.com/blog/2015-09-03-part4-rabbitmq-for-beginners-
exchanges-routing-keys-bindings.html .

[9] Lakka, E., et al. (2019). End-to-End Semantic Interoperability Mechanisms for IoT. 24th IEEE
International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD 2019), IEEE, Limassol, Cyprus, 11-13 September 2019, pp. 1-6.

[10] Lonescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ,
14th RoEduNet International Conference – Networking in Education and Research (RoEduNet
NER), IEEE, Caiova, Romania, Sept. 24-26, pp. 132-137.

[11] Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C. and Manzoni, P.
(2015). A comparative evaluation of AMQP and MQTT protocols over unstable and mobile
networks, 12th Annual IEEE Consumer Communications and Networking Conference (CCNC),
IEEE, pp. 1-6.

[12] Richardson, A. (2014) RabbitMQ Essentials, PACKT Publishing, pp. 1-182.
http://www.spooch.dk/Ebooks/Programming/RabbitMQ%20Essentials%20%5BeBook%5D.p
df

[13] Shelby, Z., Hartke, K. and Bormann, C. (2014). The constrained application protocol
(CoAP), IETF, RFC 7252. https://tools.ietf.org/html/rfc7252 .

[14] Soultatos, O., et al., 2019. Pattern-Driven Security, Privacy, Dependability and
Interoperability Management of IoT Environments. 24th IEEE International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks (CAMAD
2019), IEEE, Limassol, Cyprus, 11-13 September 2019, pp. 1-6.

[15] THREAT-ARREST D1.3. (2019). THREAT-ARREST platform’s initial reference
architecture. THREAT-ARREST Project. Available at https://www.threat-arrest.eu/

[16] THREAT-ARREST D2.4 (2019). Emulation tool interoperability module v1.
THREAT-ARREST Project. Available at https://www.threat-arrest.eu/

THREAT-ARREST D4.3 DS-SC7-2017/№ 786890

THREAT-ARREST 37 August 31, 2019

[17] THREAT-ARREST D4.2 (2019). THREAT-ARREST serious games v1. THREAT-
ARREST Project. Available at https://www.threat-arrest.eu/

[18] THREAT-ARREST D5.3 (2019). The Simulation component IO module v1. THREAT-
ARREST Project. Available at https://www.threat-arrest.eu/

