

Cyber Security PPP: Addressing Advanced Cyber Security Threats and
Threat Actors

Cyber Security Threats and Threat Actors Training - Assurance Driven

Multi- Layer, end-to-end Simulation and Training

D5.2: Simulated Components and Network Generator v1†

Abstract: This deliverable provides a report on the design and current development status of
the THREAT-ARREST simulation component, particularly on an initial set of simulated
components implemented and on how to setup simulation scenarios of networks. It is a first
demonstration of the work performed as part of task “T5.1 – Simulated Component’s Network
Generator” in the first 8 months after its beginning in month 4 of THREAT-ARREST.

Contractual Date of Delivery 31/08/2019
Actual Date of Delivery 31/08/2019
Deliverable Security Class Public
Editor Torsten Hildebrandt (SimPlan)
Contributors Torsten Hildebrandt, Dirk Wortmann

(SimPlan),
George Hatzivasilis (FORTH),
Michael Vinov (IBM)

Quality Assurance Vassilis Prevelak (TUBS),
Martin Kunc (CZNIC)

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 786890.

TREAT-ARREST D5.2 DS-SC7-2017/№ 786890

THREAT-ARREST 2 August 31, 2019

The THREAT-ARREST Consortium
Foundation for Research and Technology – Hellas (FORTH) Greece

SIMPLAN AG (SIMPLAN) Germany

Sphynx Technology Solutions (STS) Switzerland

Universita Degli Studi di Milano (UMIL) Italy

ATOS Spain S.A. (ATOS) Spain

IBM Israel – Science and Technology LTD (IBM) Israel

Social Engineering Academy GMBH (SEA) Germany

Information Technology for Market Leadership (ITML) Greece

Bird & Bird LLP (B&B) United Kingdom

Technische Universitaet Braunschweig (TUBS) Germany

CZ.NIC, ZSPO (CZNIC) Czech Republic

DANAOS Shipping Company LTD (DANAOS) Cyprus

TUV HELLAS TUV NORD (TUV) Greece

LIGHTSOURCE LAB LTD (LSE) Ireland

Agenzia Regionale Strategica per la Salute ed il Sociale
(ARESS)

Italy

TREAT-ARREST D5.2 DS-SC7-2017/№ 786890

THREAT-ARREST 3 August 31, 2019

Document Revisions & Quality Assurance

Internal Reviewers

1. Vassilis Prevelak (TUBS)
2. Martin Kunc (CZNIC)

Revisions

Version Date By Overview
0.4 23/08/2019 Editor Incorporating comments from internal

review
0.3 31/07/2019 Torsten Hildebrandt,

SimPlan
Jasima/SimController sections added

0.2 23/05/2019 George Hatzivasilis,
FORTH

Connection of CTTP models & simulation

0.1 12/05/2019 Editor First Draft

TREAT-ARREST D5.2 DS-SC7-2017/№ 786890

THREAT-ARREST 4 August 31, 2019

Executive Summary
This deliverable documents the current state of task T5.1 of the THREAT-ARREST project
“Simulated Component’s Network Generator”, being concerned with the development of the
Simulation Module of the THREAT-ARREST platform using the discrete-event simulation
engine Jasima. Simulation is an important part of a Cyber Threat and Training Preparation
(CTTP) training session.

The work on task T5.1 started in month 4 of the project, so this deliverable reports on the results
achieved between months 4 and 12. It presents a first version of the THREAT-ARREST
Simulation Tool. It demonstrates the tool’s use to create and execute a network of simulated
components in a web-based setting:

 creating and parameterizing simulation runs,

 controlling the simulation lifecycle (start/stop/pause execution), and

 allowing for the simulation state to be shared/synchronized with the Jasima
Visualization Tool (JVT) developed as part of task T4.1.

This deliverable focusses on the functionality required to create, parameterize, and control
networks of simulated cyber-system components that will be part of a CTTP training program.
This deliverable is complemented by a number of additional deliverables, detailing additional
aspects of the simulation capabilities of the THREAT-ARREST platform. First, the deliverable
D5.3 presents the integration of the Simulation Tool in the overall platform architecture in
detail, also describing its interactions with other platform components. In month 15, the
deliverable D5.4 (task T5.3) will present details on the execution of networks consisting of
simulated components.

Work on task T5.1 is closely related to the development of the JVT, therefore deliverable D4.1
(in particular Section 5) complements this document by showing how the Simulation Tool can
be integrated with the JVT and display information from a simulation run. Synchronization
between JVT and the Simulation Tool is achieved using a message-oriented middleware that
will also be used in the future THREAT-ARREST platform implementation as a means for
asynchronous communication between various platform components.

Finally, this deliverable is related to deliverable D3.1, detailing the structure of a CTTP model.
In the full platform implementation, the simulation sub-model of the CTTP model will define
the set of simulated components and their parameters, defining their behaviour during a training
session.

TREAT-ARREST D5.2 DS-SC7-2017/№ 786890

THREAT-ARREST 5 August 31, 2019

Table of Contents
1 INTRODUCTION ... 9

2 GENERATION AND INSTANTIATION OF SIMULATED NETWORK COMPONENTS 10
2.1 THE JASIMA DISCRETE-EVENT SIMULATION LIBRARY .. 10
2.2 SIMULATION TOOL ARCHITECTURE ... 10
2.3 SIMULATION CONTROLLER API .. 12
2.4 SHARING SIMULATION STATE WITH EXTERNAL PLATFORM COMPONENTS ... 13
2.5 INITIAL SET OF SIMULATION COMPONENTS ... 13
2.6 NETWORK GENERATION AND INSTANTIATION ... 14
2.7 FUTURE INTEGRATION ASPECTS .. 15

2.7.1 Emulation .. 15
2.7.2 Data Fabrication ... 16
2.7.3 Interactive Simulation (User Integration) ... 16

3 CTTP MODEL-DRIVEN SIMULATION .. 17
3.1 DEVELOPMENT SUB-MODEL .. 17
3.2 SIMULATION INSTANTIATION SCRIPT ... 18
3.3 EXAMPLE – SMART SHIPPING SCENARIO .. 18

3.3.1 Simulated component – The on-deck monitoring equipment ... 18
3.3.2 Scenario – GPS spoofing ... 18
3.3.3 CTTP model .. 20
3.3.4 Instantiation script 1 – Build simulation from the scratch .. 21
3.3.5 Instantiation script 2 – Deploy a pre-configured simulation .. 21

4 CONCLUSION .. 23

REFERENCES .. 24

APPENDIX I – CTTP DEVELOPMENT SUB-MODEL SCHEMA ... 25

APPENDIX II – CTTP DEVELOPMENT SUB-MODEL FOR THE ON-DECK EQUIPMENT 27

THREAT-ARREST 6 August 31, 2019

List of Abbreviations
CTTP Cyber Threat and Training Preparation

DCC Deck Control Center

DFP Data Fabrication Platform

GPS Global Positioning System

JVT Jasima Visualization Tool

PAL Platform Level software

SAL Software Architecture Layer

SVG Scalable Vector Graphics

VM Virtual Machine

XML eXtensible Markup Language

XSD XML Schema Definition

WP Work Package

THREAT-ARREST 7 August 31, 2019

List of Tables
Table 1 Actions implemented by the Simulation Controller .. 12

THREAT-ARREST 8 August 31, 2019

List of Figures
Figure 1 General architecture of the Jasima simulation library ... 10
Figure 2 Simplified Platform Architecture from a Simulation Perspective 11
Figure 3 Exemplary Components Available in the Project Template / Component Library ... 14
Figure 4 Excerpt of a Simulation Scenario Definition in XML format 15
Figure 5 The development sub-model schema ... 17
Figure 6 The UML class diagram of the simulated on-deck equipment 19
Figure 7 The three potential routes of the simulated scenario based on the state of the GPS
equipment ... 20

THREAT-ARREST 9 August 31, 2019

1 Introduction
This deliverable documents the current state of task T5.1 of the THREAT-ARREST project
“Simulated Component’s Network Generator”, being concerned with the development of the
Simulation Module of the THREAT-ARREST platform using the discrete-event simulation
engine Jasima. Simulation is an important part of a Cyber Threat and Training Preparation
(CTTP) training session. The work on task 5.1 started in month 4 of the project, so this
deliverable reports on the results achieved between months 4 and 12. It presents a first version
of the simulation tools, that can be used to create a network of simulated components in a web-
based setting creating simulation runs, controlling the simulation lifecycle (start/stop/pause
execution), and allowing for the simulation state to be shared/synchronized with the Jasima
Visualization Tool (JVT) developed as part of the task T4.1.

This deliverable focusses on the functionality required to create, parameterize and control
networks of simulated cyber-system components that will be part of a CTTP training program.
This deliverable is complemented by a number of additional deliverables, detailing additional
aspects of the simulation capabilities of the THREAT-ARREST platform. First, the deliverable
D5.3 presents the integration of the Simulation Tool in the overall platform architecture, also
describing its interactions with other platform components. Work on task T5.1 is closely related
to the development of the JVT, therefore the deliverable D4.1 (in particular Section 5)
complements this document by showing how the Simulation Tool can be integrated with the
JVT and display information from a simulation run. Synchronization is achieved using a
message-oriented middleware that will also be used in the future THREAT-ARREST platform
implementation as a means for asynchronous communication between various platform
components. Finally, this deliverable is related to the deliverable D3.1, detailing the structure
of a CTTP model. In the full platform implementation, the simulation sub-model of the CTTP
model will define the set of simulated components and their parameters, defining their
behaviour during a training session.

This document consists of two main parts. In Section 2 the simulation environment, consisting
of the simulation controller as well as a first set of simulated components and the simulated
component’s network generator will be developed.

Section 3 presents details of the integration of the Simulation Tool with the simulation sub-
model of a CTTP model. This document has two appendices. Appendix I shows the eXtensible
Markup Language (XML) Schema Definition (XSD) file of the CTTP simulation sub-model.
Appendix II contains an example XML document following this schema, describing part of the
example from the smart shipping pilot used in Section 3.

Finally, Section 4 concludes this work.

THREAT-ARREST 10 August 31, 2019

2 Generation and Instantiation of Simulated Network
Components

2.1 The Jasima Discrete-Event Simulation Library
The THREAT-ARREST platform uses the Jasima discrete-event simulation library as the core
of its simulation component. Jasima is a Java-based software library developed by SimPlan. In
the THREAT-ARREST project it is extended significantly to cover the needs of model-driven
cyber-security training. To achieve this goal, the current implementation work focusses on two
things. On the one hand on developing a set of simulated components as required by the
THREAT-ARREST pilot scenarios and on the other hand integrating Jasima into the overall
platform architecture.

Work on simulation is closely related to SimPlan’s work on Task T4.1 (Visualization Tools)
developing the Jasima Visualization Tool (JVT, see also deliverable D4.1). As a first
development step a working integration of the simulation component and JVT was developed
and presented at the July 2019 Consortium Meeting in Chania. Material in this deliverable is
based on first versions of both components successfully working together to visualize a running
simulation session.

2.2 Simulation Tool Architecture

Figure 1 General architecture of the Jasima simulation library

The general architecture of the Jasima simulation library is shown in Figure 1. Jasima is a
simulation originating from the production/logistics domain and developed as a flexible,
extensible and fast discrete event simulation library that can be the core of decision support
systems. Building on the Java programming language, it can benefit from a large ecosystem of
tools and software libraries to quickly build simulation-based custom software.

It follows a three-layer approach with the kernel functionality and statistics functions as the
foundational layer. Upon that there is a library of basic discrete-event modelling elements (like
queues), forming the basis for domain-specific components and component libraries. The
simulation components developed for the cyber-security domain within THREAT-ARREST
can be seen as an example of such a domain-specific package.

THREAT-ARREST 11 August 31, 2019

Figure 2 Simplified Platform Architecture from a Simulation Perspective

In order to integrate Jasima in a distributed, web-based architecture such as the THREAT-
ARREST platform, a new component called “Simulation Controller” was developed. It offers
a new execution environment for running Jasima simulations and computer experiments.

A simplified version of the THREAT-ARREST system architecture focusing only on the
Simulation Tool and its integration with the Jasima Visualization Tool is shown in Figure 2.
The Simulation Tool is executed on some computer. Within the Simulation Tool, the simulation
controller is responsible for interfacing with external components, exposing the capabilities to
create/start/pause/stop simulation runs, allow external components, such as Jasima
Visualization Tool, but also the Training Tool, to access the values of certain state variables
and get notified whenever there are changes of these values during a simulation run. Using a
publish/subscribe-mechanism external components can subscribe to messages sent by the
simulation. This is used primarily by the Jasima Visualization Tool to be notified whenever the
state of a simulated component changes and the user interface has to be updated. This
mechanism is also used by the Training Tool to receive feedback about a trainee’s performance
in a training session so the performance assessment can be updated in real-time.

In comparison to the final THREAT-ARREST system architecture, the current version 1.0 of
the Simulation Tool uses a slightly simplified setup to develop a first working integration
between the simulation component and the Jasima Visualization Tool. Instead of running within
the Emulation Tool and using the platform’s message broker, it is started directly on a computer
accessible by the Jasima Visualization Tool. Additionally, the message broker is using a simple
broker implementation running as part of the simulation controller. In contrast to the final
platform setup, simulation execution is directly controlled by the user using controls of the
Visualization Tool (see also D4.1). Using this setup, simulation state can be shared successfully
and synchronized with connected instances of the JVT.

In the full THREAT-ARREST platform the Simulation Tool will be executed inside the
emulation environment on a dedicated virtual machine. This way simulated components can
directly communicate with emulated components running in their own Virtual Machines
(VMs). In order to receive simulation tasks and connect to components outside the emulated
environment, the simulation controller communicates with a broker component of the
platform’s message-oriented middleware. Using this mechanism, the Training Tool of the
THREAT-ARREST platform will control simulation execution and orchestrate the overall

THREAT-ARREST 12 August 31, 2019

execution of a training session. For further details on the integration of the Simulation Tool in
the overall THREAT-ARREST system architecture see also deliverable D5.3.

2.3 Simulation Controller API
In the current version of the simulation controller, simulation runs can be started via the
(internal) message broker. To do this, the simulation controller is listening for incoming
messages on a number of different queues and reacts upon them appropriately (see Table 1). In
a future version this functionality will also be available via a REST interface.

Table 1 Actions implemented by the Simulation Controller

Action Queue Name Parameters / Description

create
simulation
instance

/simulation-
controller/createAndInit/{simId}

Creates a new simulation
instance accessible using the
given simId. The simulation
experiment’s definition in
XML format has to be given in
the body of the message send to
this queue.

run
simulation

/simulation-controller/run/{simId} Start executing the simulation
identified by simId. No further
parameters.

pause
simulation

/simulation-controller/pause/{simId} Pause executing the simulation
after the current event is
processed. Simulation is
identified by simId and has to
be running. No further
parameters.

reset
simulation

/simulation-controller/reset/{simId} Stop executing the simulation
identified by simId. The
simulation is reset to its initial
state.

This method is usually directly
followed by a “run” action

Start
notifications
on a certain
state
variable.

/simulation-controller/observe-
value/{simId}

Takes as the messages’ body
the name of the value to be
observed as a simple string.
This method is usually executed
by the JVT to signal interest in
particular parts of the
simulation state. As a result,
update messages can be sent
selectively by the simulation
controller if a certain value is
really needed.

THREAT-ARREST 13 August 31, 2019

Messages from the simulation controller in response to these messages will be published to
the queues named “/topic/simulation/simcontroller-replies“ for normal replies or to
„/queue/errors“ to indicate error conditions.

2.4 Sharing Simulation State with External Platform Components
The simulation shares information of its state (and in particular about state changes) by
publishing update messages to a certain queue. Interested components such as the JVT (but also
the Training Tool) can subscribe to such queues in order to be notified about changes and react
upon them appropriately. This information is currently sent to a queue named
/topic/simulation/values/{simId}/{valueName} where valueName and simId will identify
which value changed and what simulation run it belongs to. An example message looks like
this:

{
 "simTime":1440,
 "simTimeAbs":"2019-06-26T21:40:35.638Z",
 "wallTime":1564604321732,
 "valueName":"scenario1.mainNet.sensor1.currentTemperature",
 "oldValue":23.5,
 "newValue":26.9
}

The messages are in JSON format and contain information on the simulation time of the change
(first two data fields), the real time on the simulation computer when the change occurred,
which value was changed and both new and old values. If the current simId would be “sim123”
then this message would have been published to the queue
“/topic/simulation/values/sim123/ scenario1.mainNet.sensor1.currentTemperature“. For
the value name the first part uniquely identifies the component based on its name in the
component hierarchy (scenario1.mainNet.sensor1). The last part identifies a certain attribute
that is observable (currentTemperature).

The exact naming scheme might change slightly in the future to a unified naming schema across
all platform components currently defined by project partner ATOS.

2.5 Initial Set of Simulation Components
Conceptionally, Jasima simulation models consist primarily of component containers and
“normal” simulation components. Containers can contain simple components or other
containers, forming a component hierarchy. Each component is uniquely identified by its name
and can have an arbitrary set of additional attributes. Each (type of) simulation component in
Jasima is a Java class defining its attributes and its behaviour. Normal components that do not
have child components are usually derived from a class “SimComponent”. Simulation
components that can contain other components are derived from a class
“SimComponentContainer”.

Defining the set of possible simulation components usually takes place using a Java IDE and
starts with a project template defining the necessary dependencies to use the core Jasima classes
and offering a build script to export all required classes as a single jar file. In THREAT-
ARREST there will be a generic project template containing a set of generic simulation

THREAT-ARREST 14 August 31, 2019

components useful across all training scenarios and specific templates derived from it
containing components that are required only for certain THREAT-ARREST pilots and specific
scenarios. Existing components in the project template can be used as a reference to create
custom components to implement additional scenarios.

Figure 3 Exemplary Components Available in the Project Template / Component Library

2.6 Network Generation and Instantiation
As stated before, running a simulation requires a scenario definition in XML format. This XML
document describes the hierarchy of components including their parameter values that are
supposed to be used for particular simulated components. Internally each component is an
instance of a component class, so either one of the standard components offered in the
component library or a custom type defined individually for a particular message. The XML
format used by Jasima to store simulation scenarios uses a generic mapping between the Java
Object graph. A generator class is used internally to create and parameterize all objects
contained in the XML file, creating a hierarchy of simulation components parameterized as
required by the straining scenario.

Internally the component hierarchy is wrapped in a SimulationExperiment as its top-level
element defining additional attributes of the simulation run such as the initial simulation time.

THREAT-ARREST 15 August 31, 2019

Figure 4 Excerpt of a Simulation Scenario Definition in XML format

An example of such an XML scenario definition is shown in Figure 4. It starts with an element
for the SimulationExperiment, subsequently defining certain attributes of a simulation run. The
component hierarchy to be used, starts with the tag rootComponent in line 10. It defines a root
component of type “SimulationScenario” named “scenario1” (just used here as a generic top-
level component container). Which contains a component of type “Network” (named
“mainNet”) which in turn contains come sensor components from the smart-home-specific part
of the component library. One of these is named “sensor1”. This was exactly the component
used by the example on how simulation state is shared among platform components with a value
name of ‘scenario1.mainNet.sensor1.currentTemperature’. The fully qualified name of this
sensor is scenario1.mainNet.sensor1 as it is contained in the mainNet component which itself
is contained in the scenario1 root component. The value name “currentTemperature” references
an observable attribute of this name that is used during simulation execution and defined in the
Sensor class.

2.7 Future Integration Aspects
For the Simulation Tool, there are a number of integration requirements with other platform
components. The reader is also referred to deliverable D5.3 for a more in-depth description of
the interactions between the Simulation Tool and other components of the THREAT-ARREST
platform. Implementation of the functionality to meet these requirements will be added in future
versions of the simulation components, as the platform components and their integration in the
overall THREAT-ARREST platform architecture progress further.

2.7.1 Emulation
As stated before, the simulation will run inside a VM within the emulated environment (see
work package 2). This way it can directly communication with emulated components/VMs in
their native protocol (as long as it is IP-based). This way it is possible for simulation
components to directly interact with software running inside such VMs, trigger actions and base

THREAT-ARREST 16 August 31, 2019

further simulation actions on the information received from these emulated components (e.g.,
a simulated attacker could try to login in some VM using some default password).

Another aspect to be worked on in a future version is the topic of clock-synchronization. In a
discrete-event simulation time can jump if there are no events during a certain time period. This
is more difficult in an emulated components where time progresses continuously using normal
speed. For certain scenarios it might be required to use a time-synchronization service to set the
time of VM’s to the current simulation but also to synchronize simulation time with the a VM’s
time based, e.g., on the duration a certain action took in a VM.

2.7.2 Data Fabrication
To integrate with the IBM’s Data Fabrication Platform (DFP), a dedicated simulation
component will be developed. It can access a fabricated event log using the DFP’s REST API
(for dynamically created data) or access pre-fabricated log data created for a particular training
session. This log will then be executed by performing certain simulation actions at exactly the
points in time and using the parameters specified in the log. This way the log file can act as a
kind of script to trigger actions in the simulation synchronized with the time of the training
session.

2.7.3 Interactive Simulation (User Integration)
A new aspect for Jasima is the requirement to be able to perform interactive simulation runs.
Potentially multiple users at the same time have to be able to interact with a simulated
component of a simulation run, view its state and potentially even interact with it and trigger
actions in them. The complete functionality to implement this feature will be added later in the
project; conceptually many instances of the JVT can access a single simulation session already
in the current version, but concurrent actions from multiple sources will require additional
implementation work.

THREAT-ARREST 17 August 31, 2019

3 CTTP Model-Driven Simulation

3.1 Development sub-model
The THREAT-ARREST platform operation will be driven by the CTTP models. Among others,
a CTTP model contains information regarding how to instantiate the various platform modules
and facilitate the training procedures.

The development subset of a valid CTTP model determines the operational aspects of the pilot
system, how they can be deployed, and their connections. The following figure illustrates the
main elements of the development sub-model and Appendix I presents an initial version of its
schema.

Figure 5 The development sub-model schema

Every asset is broken down into several components that describe its actual structure. These
components can model the Platform Level software (PAL) (i.e. operating system), the Software
Architecture Layer (SAL) (e.g. software applications), the HARDWARE modules, and how
these PAL/SAL/HARDWARE elements are connected and deployed. Each of these three
component types has a unique ID and a brief description, presenting to the user the main details
for the component.

The Deployment sub-model also determines the procedure of developing/instantiating the
component in the related platform tools. This may include the interoperation of real equipment
(administrated via the Assurance Tool) or emulation/simulation of it. The CTTP designer has
to define the relevant tool/s and how the platform can instantiate the component.

For the simulated components, two options are supported:

1. Build from the scratch: a tool-specific script that describes how to build and install a
new instance of the component

2. Pre-set: if the component has been set in advance, we can deploy new template
instances of it (e.g. in case of simulation or emulation). This is very helpful, as some

THREAT-ARREST 18 August 31, 2019

aspects of a real system and its interplay with the THREAT-ARREST modules (e.g.
fabricated logs, embedded assurance controls, etc.) could be quite complex to be
included in the model.

3.2 Simulation Instantiation script
In order to instantiate a simulated component (e.g. (Alexandris et al., 2018; Hatzivasilis et al.,
2019a; Hatzivasilis et al., 2019b; Hatzivasilis et al., 2017; Soultatos et al., 2019; Cesena et al.;
2017)), we have to provide a valid script to the Simulation Controller (see Section 2) for
configuring the Jasima simulator. The Deployment sub-model contains the related script for
every simulated component (either to build it from the scratch or to instantiate an existing pre-
configured simulation setting).

At the current version, the information in the asset’s ‘description’ and the related ‘instantiation
script’ are correlated, but they are set separately and manually by the CTTP designer in order
to facilitate the implementation process.

An example of instantiating simulated components is detailed in the following subsections.
Jasima can run either in a dedicate machine or in a VM. The first case is described below.

In the second case, prior the Jasima instantiation scripts, we need to instantiate the Jasima VM.
This is formed as an additional instantiation script for the Emulated Tool (Ubuntu 19 OS, 20GB
hard-disk, 16GB RAM, Jasima simulator), which must be executed first. Then, aforementioned
simulation instantiation scripts are parsed to the Jasima installation in this VM. The deployment
of VMs through the Emulation Tool (OpenStack) is presented in the related work package (WP)
2 deliverables (D2.1 and D2.3).

3.3 Example – Smart shipping scenario
This subsection presents a complete example for modelling a simulated component for the
smart shipping scenario (Use Case 3) and how to instantiate it during a training session.

3.3.1 Simulated component – The on-deck monitoring equipment
As an example in the smart shipping scenario, we present the simulated component for the on-
deck monitoring equipment of the vessel. This includes the closed system of the Deck Control
Center (DCC) that collects information from on-ship devices (e.g. navigation equipment,
sensors, etc.) and displays it to the on-deck crew and the captain.

3.3.2 Scenario – GPS spoofing
This scenario simulates a runtime attack on the ship and targets the captain (evaluable actuator
with main security knowledge) or the on-deck crew (system operators with low security
training). As the vessel navigates from Heraklion to Piraeus, a hacker launches a Global
Positioning System (GPS) spoofing attack. The attack starts changing the GPS signals (DEP3)
that are recorded by the on-ship equipment (PAL3/SAL3/HARDWARE3 and
PAL4/SAL4/HARDWARE2) in an attempt to make the vessel deviate significantly from its
course. The variations on the signal are smooth and gradual in order to make the detection of
the malicious effects harder. The trainees are monitoring the overall navigating operations from
the on-deck monitors. Normally, there are alternative means for observing and assessing the
validity of the current position of the vessel as shown by different on-board equipment, such as
GPS monitor, physical compass, live maps, etc. Thus, the trainees will have to monitor all of
them, detect potential differences, and perform the designated actions in order to contain the
misbehaving equipment and reach the correct destination.

The scenario is implemented in the Simulation Tool. The various positioning modules are
modelled as different nodes of the simulated on-deck monitoring and management

THREAT-ARREST 19 August 31, 2019

infrastructure. Each module has its own operational behaviour (e.g. normal, faulty, or
compromised), which have been modelled beforehand and are set by the trainer during the
scenario’s initialization. Figure 6 depicts the related UML class diagram for the navigation
equipment.

Figure 6 The UML class diagram of the simulated on-deck equipment

The simulated trip lasts 10 minutes (while the actual one would take several hours). The trainee
must observe the on-deck modules, discriminate normal, faulty, and/or compromised
operational behaviours, and perform the appropriate actions (e.g. suspend its operation).

3.3.2.1 Scenario propagation
- Normal operation where no anomaly regarding the vessel’s position is modelled.

- Faulty operation of one positioning module (i.e. GPS) where a minor and steady
deviation is recorded, compared to the actual value.

- GPS spoofing attack where a hacker manipulates the data that is processed by the on-
deck GPS module and tries to change the ship’s route.

The next picture depicts the three potential routes.

THREAT-ARREST 20 August 31, 2019

Figure 7 The three potential routes of the simulated scenario based on the state of the GPS equipment

3.3.2.2 Scenario modelling
For modelling the scenario, we first have to deploy a dedicated computer or instantiate a VM
that runs the Jasima simulator. In the simulator, we model the on-deck infrastructure, where
each equipment monitor is defined as a different node. Specifically for this scenario, we
determine the positioning modules (GPS, compass, live maps) along with the supported
operational behaviours for each one of them (normal, faulty, compromised). The various GPS
signals could be generated by the IBM’s DFP and drive the simulation accordingly.

3.3.3 CTTP model
The code sample in Appendix II models the development sub-model for the aforementioned
asset in an XML format. The characteristics of the DCC are described in the SAL, PAL, and
Deployment elements.

The physical characteristics (HARDWARE2-HARDWARE3) of the DCC are:

- Hardware

o On-deck monitors

o Sensory or other equipment (e.g. navigation components, on-ship sensors for
fuel consumption, exhaust emissions, etc.)

o LAN Router

- Connectivity

o Ethernet

The software characteristics (PAL3/SAL3-PAL4/SAL4) of the DCC are:

- The monitors’ visualization interfaces

- The software that performs the main functionality of each component

The Deployment feature (DEP3) that is correlated with the DCC is:

- PAL3/SAL3-PAL4/SAL4 (software of the navigation equipment and the on-deck
monitoring/management modules) runs on HARDWARE2-HARDWARE3 (navigation
equipment and their deck monitoring and management modules)

THREAT-ARREST 21 August 31, 2019

Two instantiation scripts are detailed in the subsections below. In the first one, we configure
the related simulation from the scratch, while in the second case we deploy a pre-configured
simulation setting of the DCC.

3.3.4 Instantiation script 1 – Build simulation from the scratch
The following piece of code describes how to build a simulation with the on-deck equipment
from the scratch. We create a deck which is consisted by a faulty GPS equipment, along with a
compass and the live map modules that work properly. The subcomponent description
determines the simulated component’s constructor (in Java) that will be called. GPS is
instantiated as ‘faulty’, while the default behaviour of the other two components, which is
implemented by the simple constructor (without input arguments), is the normal operation.

The Simulator Controller will extract the ’installation_script’ and create a file ’DCC-sim-
scenarion.xml’ that contains the installation script for Jasima. Then, it will run the command:

- java –jar jasima-threatarrest.jar /HOME_DIR/dir/DCC-sim-scenario.xml

The components can be also initialized with a specific navigation log, provided by the DFP at
instantiation time for modelling different trips. Alternatively, specific logs of each behaviour
(normal, faulty, compromised) for every component could have been produced in advance and
fed into a pre-configured simulation. In a more advanced THREAT-ARREST implementation
phase, the DFP would produce the navigation events and fed the simulation at runtime.

3.3.5 Instantiation script 2 – Deploy a pre-configured simulation
The next piece of code deploys a pre-configured simulation of the DCC.

<Instantiation>
<tool>Simulation</tool>
<template_name>jasima-threatarrest-DCC.jar</template_name>
<installation_script>NO</installation_script>

</Instantiation>

<Instantiation>
<tool>Simulation</tool>
<template_name>NO</template_name>
<installation_script>

<file_name>DCC-sim-scenario.xml</file_name>
<duration>10<duration>
<component>Deck</component>

<subcomponent-list>
 <subcomponent>
 <name>GPS</name>

<isFaulty>true</isFaulty>
<isCompromised>false</isCompromised>
<localLog>’the navigation log with fabricated events that are reported’</localLog >

 </subcomponent>
<subcomponent>

 <name>Compass</name>
 </subcomponent>

<subcomponent>
 <name>LiveMap</name>

 </subcomponent>
</subcomponent-list>

</installation_script>
</Instantiation>

THREAT-ARREST 22 August 31, 2019

The Simulator Controller will extract the ’template_name’ of the pre-configured simulation
and run the command:

- java –jar jasima-threatarrest-DCC.jar

THREAT-ARREST 23 August 31, 2019

4 Conclusion
This deliverable presents the initial version of the Simulation Tool. It is the first document of
the task “T5.1 – Simulated components’ generator”. The Simulation Tool is based on the Java
simulator Jasima. The tool gets as input the simulation sub-model from the Assurance and
Training Tools, extracts the related instantiation script, and deploys the simulated components.
The simulations can also utilize synthetic logs and events, which are generated by the IBM’s
Data Fabrication Platform (DFP). In this version, we describe how to model a training scenario
for the smart transportation use case.

The CTTP models are detailed in the WP3 while the data fabrication is presented in D5.1. The
overall interconnections of the Simulation Tool are defined in D5.3. In the second year of the
project, the Simulation Tool will be further documented and concrete simulations will be
implemented, interplaying with the other platform tools. This work will be documented in the
related D5.6 until the 28th month of the project.

THREAT-ARREST 24 August 31, 2019

References
[1] Alexandris, G., et al., 2018. Blockchains as enablers for auditing cooperative circular

economy networks. 23rd IEEE International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD 2018), IEEE, Barcelona,
Spain, 17-19 September 2018, pp. 1-7.

[2] Cesena, M., et al. 2017. SHIELD Technology Demonstrators. CRC Press, Book for
Measurable and Composable Security, Privacy, and Dependability for Cyberphysical
Systems, pp. 381-434.

[3] Hatzivasilis, G., et al., 2019a. The CE-IoT Framework for Green ICT Organizations. 1st
International Workshop on Smart Circular Economy (SmaCE), Santorini Island,
Greece, 30 May 2019, IEEE, pp. 1-7.

[4] Hatzivasilis, G., et al., 2019b. MobileTrust: Secure Knowledge Integration in VANETs.
ACM Transactions on Cyber-Physical Systems – Special Issue on User-Centric Security
and Safety for Cyber-Physical Systems, ACM, vol. 4, issue 3, Article no. 33, pp. 1-15.

[5] Hatzivasilis, G., et al., 2017. Real-time management of railway CPS. 5th
EUROMICRO/IEEE Workshop on Embedded and Cyber-Physical Systems (ECYPS
2017), IEEE, Bar, Montenegro, 11-15 June 2017.

[6] Soultatos, O., et al., 2019. Pattern-Driven Security, Privacy, Dependability and
Interoperability Management of IoT Environments. 24th IEEE International Workshop
on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD 2019), IEEE, Limassol, Cyprus, 11-13 September 2019, pp. 1-6.

THREAT-ARREST 25 August 31, 2019

Appendix I – CTTP Development sub-model Schema
This appendix presents an initial schema version of the CTTP development sub-model. The schema is

an XML Schema Definition (XSD) file.

[1] <?xml version="1.0" encoding="UTF-8"?>
[2] <xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
[3] xmlns:xs="http://www.w3.org/2001/XMLSchema"
[4] xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty">
[5] <xs:element minOccurs="0" maxOccurs="unbounded" abstract="true" name="CTTP_model">
[6] <xs:complexType>
[7] <xs:sequence>
[8] <xs:element minOccurs="0" maxOccurs="unbounded" name="assets">
[9] <xs:complexType>
[10] <xs:sequence>
[11] <xs:element name="id" type="xs:string" use="required"/>
[12] <xs:element name="description" type="xs:string" use="required"/>
[13] <xs:element minOccurs="1" maxOccurs="1" name="component">
[14] <xs:complexType>
[15] <xs:sequence>
[16] <xs:element minOccurs="0" maxOccurs="unbounded " name="PAL">
[17] <xs:complexType>
[18] <xs:sequence>
[19] <xs:element name="id" type="xs:string" use="required"/>
[20] <xs:element name="description" type="xs:string" use="required"/>
[21] </xs:sequence>
[22] </xs:complexType>
[23] </xs:element>
[24] <xs:element minOccurs="0" maxOccurs="unbounded " name="SAL">
[25] <xs:complexType>
[26] <xs:sequence>
[27] <xs:element name="id" type="xs:string" use="required"/>
[28] <xs:element name="description" type="xs:string" use="required"/>
[29] </xs:sequence>
[30] </xs:complexType>
[31] </xs:element>
[32] <xs:element minOccurs="0" maxOccurs="unbounded " name="HARDWARE">
[33] <xs:complexType>
[34] <xs:sequence>
[35] <xs:element name="id" type="xs:string" use="required"/>
[36] <xs:element name="description" type="xs:string" use="required"/>
[37] </xs:sequence>
[38] </xs:complexType>
[39] </xs:element>
[40] <xs:element minOccurs="0" maxOccurs="unbounded " name="Deployment">
[41] <xs:complexType>
[42] <xs:sequence>
[43] <xs:element name="id" type="xs:string" use="required"/>
[44] <xs:element name="description" type="xs:string" use="required"/>
[45] </xs:sequence>
[46] </xs:complexType>
[47] </xs:element>
[48] <xs:element minOccurs="0" maxOccurs="unbounded " name="Instantiation">
[49] <xs:complexType>
[50] <xs:sequence>
[51] <xs:element name="tool" type="xs:string" use="required"/>
[52] <xs:element name="template_name" type="xs:string" use="required"/>
[53] <xs:element name="installation_script" type="xs:string" use="required"/>
[54] </xs:sequence>
[55] </xs:complexType>
[56] </xs:element>

THREAT-ARREST 26 August 31, 2019

[1] </xs:element>
[2] </xs:sequence>
[3] </xs:complexType>
[4] </xs:element>
[5] </xs:sequence>
[6] </xs:complexType>
[7] </xs:element>
[8] </xs:sequence> </xs:complexType> </xs:element> </xs:schema>

THREAT-ARREST 27 August 31, 2019

Appendix II – CTTP Development sub-model for the on-deck
equipment

This appendix presents the CTTP development sub-model for instantiating the on-deck
monitoring and management equipment (see subsection (5.3). The scripts for the two
instantiation types (build form the scratch or deploy a pre-configured setting) are detailed in the
subsections 5.3.3 and 5.3.4 respectively.

[9] <?xml version="1.0" encoding="UTF-8"?>
[10] <!--CTTP Model for the vessel’s on-deck equipment-->
[11] <CTTP_model xmlns="http://www.w3schools.com"
[12] xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
[13] xsi:schemaLocation="http://www.w3schools.com file:///C:/CTTP_Model.xsd">
[14] <name>Smart_Shipping_CTTP</name>
[15] <assets>
[16] <id>ASSET2</id>
[17] <description>PCs/devices of the closed Deck Control Center (DCC) system. The DCC will

simulate the main components that are required for the on-deck control by the captain and the crew.
In the current scenario, we model the navigation equipment of the ship (i.e. GPS, live-maps, and
compass).</description>

[18] <component>
[19] <PAL>
[20] <id>PAL3-PAL4</id>
[21] <description>The OS for the sensory or other equipment, which is administrated through

the DCC.</description>
[22] </PAL>
[23] <SAL>
[24] <id>SAL3-SAL4</id>
[25] <description>Monitoring/management modules for the sensory or other equipment, which

is administrated through the DCC. It also models the software that runs on the underlying sensory or
other equipment.</description>

[26] </SAL>
[27] <HARDWARE>
[28] <id>HARDWARE2-HARDWARE3</id>
[29] <description>Sensory or other equipment (e.g. navigation modules and sensors for fuel

consumption, exhaust gas, etc.) and their on-deck monitors. </description>
[30] </HARDWARE >
[31] <Deployment>
[32] <id>DEP3</id>
[33] <description>PAL3/SAL3-PAL4/SAL4 are deployed upon HARDWARE2-

HARDWARE3</description>
[34] </Deployment>
[35]

[36] <!--(Optional) Instantiate the Jasima VM first-->
[37] <Instantiation>
[38] <tool>Emulation</tool>
[39] <!--see D2.1-->
[40] </Instantiation>
[41]

[42] <!--One of the two ‘Instantiation’ choices will be made by the CTTP designer-->
[43] <Instantiation>
[44] <tool>Simulation</tool>
[45] <template_name>NO</template_name>
[46] <installation_script>-- Jasima Script / Subsection 5.3.3 --</installation_script>
[47] </Instantiation>
[48] <Instantiation>
[49] <tool>Simulaiton</tool>
[50] <template_name>-- Jasima Script / Subsection 5.3.4 --</template_name>
[51] <installation_script>NO</installation_script>

THREAT-ARREST 28 August 31, 2019

[52] </Instantiation>
[53] </component>
[54] </assets>
[55] </CTTP_model>

