
 
 

Cyber Security PPP: Addressing Advanced Cyber Security Threats and 
Threat Actors  

 

 

 
Cyber Security Threats and Threat Actors Training - Assurance Driven 

Multi- Layer, end-to-end Simulation and Training 

 
D5.3: The Simulation component IO module v1† 

Abstract: This document is the result of the first iteration of task T5.4 activities. It defines the 
technical means and type of interfaces for interconnecting the Simulation Tool with the other 
platform components, namely the Training Tool, the Visualisation Tool, and the Data 
Fabrication Platform. The aim of the first version of the document is to guide the Simulation 
Tool’s integration activities in the second year of the project and to ensure the proper 
interconnection with the other platform components. 
 

 
Contractual Date of Delivery  31/08/2019 
Actual Date of Delivery  31/08/2019 
Deliverable Security Class  Public 
Editor  Hristo Koshutanski (ATOS) 

Contributors Oleg Blinder (IBM),  
Torsten Hildebrandt (SIMPLAN) 
 Quality Assurance Dirk Wortmann (SIMPLAN),   
Fulvio Frati (UMIL), 
George Hatzivasilis (FORTH). 

                                                 
† The research leading to these results has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 786890. 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 2 August 31, 2019 

The THREAT-ARREST Consortium 
Foundation for Research and Technology – Hellas (FORTH) Greece 
SIMPLAN AG (SIMPLAN) Germany 
Sphynx Technology Solutions (STS) Switzerland 
Universita Degli Studi di Milano (UMIL) Italy 
ATOS Spain S.A. (ATOS) Spain 
IBM Israel – Science and Technology LTD (IBM) Israel 
Social Engineering Academy GMBH (SEA) Germany 
Information Technology for Market Leadership (ITML) Greece 
Bird & Bird LLP (B&B) United Kingdom 
Technische Universitaet Braunschweig (TUBS) Germany 
CZ.NIC, ZSPO (CZNIC)  Czech Republic 
DANAOS Shipping Company LTD (DANAOS)  Cyprus 
TUV HELLAS TUV NORD (TUV) Greece 
LIGHTSOURCE LAB LTD (LSE) Ireland 
Agenzia Regionale Strategica per la Salute ed il Sociale 
(ARESS) 

Italy 

 
  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 3 August 31, 2019 

Document Revisions & Quality Assurance 
 
Internal Reviewers  

1. Dirk Wortmann (SIMPLAN),  
2. Fulvio Frati (UMIL), 
3. George Hatzivasilis (FORTH). 

 
Revisions 

Version Date By Overview 
0.6 27/08/2019 Editor Addressed comments by FORTH from the 

internal quality review process 
0.5 23/08/2019 Editor Addressed comments by SIMPLAN and 

UMIL from the internal quality review 
process 

0.4 22/08/2019 SIMPLAN, UMIL Revision of message broker 
communications, and overall content 

0.3 07/08/2019 Editor ATOS’ contribution to Sections 1, 3 and 5 
0.2 01/07/2019 IBM IBM’s contribution to Section 4 
0.1 20/05/2019 Editor First Draft with ToC 

 
  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 4 August 31, 2019 

Executive Summary 

This document is the result of the first iteration of task T5.4 activities and reports the work 
performed by month 12 of the project. It steps on and extends the results of “D1.3 – THREAT-
ARREST platform’s initial reference architecture” to define the technical means and interfaces 
for interconnecting the Simulation Tool with the other platform components, namely the 
Emulation Tool, the Training Tool, the Visualisation Tool, and the Data Fabrication Platform. 

The goal of this first version is to guide the Simulation Tool integration activities in the second 
year of the project and proper interconnection with the other platform components. Particularly, 
this document relates to the work package (WP) 6 activities on system integration starting in 
month 13 of the project. 

Importantly, this document has two other counterpart documents – the deliverable “D2.4 – 
Emulation tool interoperability module v1” and the deliverable “D4.3 – Training and 
Visualisation tools IO mechanisms v1”. These two other deliverables address in a similar but 
complementary way the interconnections of the other platform tools, and altogether provide an 
overall view of THREAT-ARREST platform interconnections for year 1 of the project. In 
addition, deliverable “D5.2 – Simulated components and network generator v1” describes how 
simulation components are instantiated based on the related Cyber Threat and Training 
Preparation (CTTP) sub-model. 

 
 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 5 August 31, 2019 

Table of Contents 

1 INTRODUCTION ....................................................................................................................................... 9 

2 MESSAGE BROKER AND REST COMMUNICATIONS................................................................... 10 
2.1 MESSAGE BROKER-ENABLED COMMUNICATIONS ................................................................................... 10 

2.1.1 Standard RabbitMQ Message Flow .............................................................................................. 13 
2.1.2 RabbitMQ Topic Exchange ........................................................................................................... 14 

2.2 REST COMMUNICATIONS ........................................................................................................................ 14 

3 SIMULATION TOOL INTERCONNECTIONS ................................................................................... 16 
3.1 INTERCONNECTION WITH THE EMULATION TOOL .................................................................................... 17 
3.2 INTERCONNECTION WITH THE TRAINING AND VISUALISATION TOOLS .................................................... 17 
3.3 INTERCONNECTION WITH THE VISUALISATION TOOL ON USER ACTIONS ................................................ 20 
3.4 INTERCONNECTION WITH THE DATA FABRICATION PLATFORM ............................................................... 22 

4 DATA FABRICATION PLATFORM FUNCTIONALITY AND API................................................. 24 
4.1 IBM DATA FABRICATION PLATFORM ENHANCEMENT ............................................................................. 24 

4.1.1 Cyber Network and Scenario Definition ....................................................................................... 24 
4.1.2 Log Fabrication ............................................................................................................................ 24 

4.2 THREAT-ARREST REQUIREMENTS FOR SYNTHETIC DATA .................................................................. 24 
4.3 DATA FABRICATION PLATFORM – LOG FABRICATION API ...................................................................... 25 

4.3.1 Cyber Network Definition API ...................................................................................................... 25 
4.3.2 Scenario Definition API ................................................................................................................ 25 
4.3.3 Log Fabrication API ..................................................................................................................... 25 

5 CONCLUSIONS AND NEXT STEPS ..................................................................................................... 27 

6 REFERENCES .......................................................................................................................................... 28 
 
 
  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 6 August 31, 2019 

List of Abbreviations 
AMQP Advanced Message Queuing Protocol 

API Application Programming Interface 

CoAP Constrained Application Protocol 

CoRE Constrained RESTful environments 

CSP Constraint Satisfaction Problem 

CTTP Cyber Threat and Training Preparation 

DFP Data Fabrication Platform 

DTLS Datagram Transport Layer Security 

GUI Graphical User Interface 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

IEC International Electrotechnical Commission 

IETF Internet Engineering Task Force 

ISO International Organization for Standards 

IoT Internet of Things 

MQTT Message Queuing Telemetry Transport 

OASIS Organization for the Advancement of Structured Information Standards 

QoS Quality of Service 

REST Representational State Transfer 

STOMP Simple Text Oriented Messaging Protocol 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UDP User Datagram Protocol 

VM Virtual Machine 

WP Work Package 

  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 7 August 31, 2019 

List of Figures 
Figure 1 Basic steps to create an application with RabbitMQ ................................................. 11 
Figure 2 Sequence diagram for discovery operation ................................................................ 12 
Figure 3 Sequence diagram for event subscription operation .................................................. 12 
Figure 4. Standard RabbitMQ message flow ........................................................................... 13 
Figure 5 The REST architecture and the supported operations ............................................... 15 
Figure 6: THREAT-ARREST Platform Components Interconnection – Simulation Tool View
 .................................................................................................................................................. 16 
Figure 7: Simulation Tool Interconnection with the Training and Visualisation Tools .......... 19 
Figure 8: Interconnection of Simulation Tool with Visualisation Tool on User Actions ........ 21 
 
  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 8 August 31, 2019 

List of Code Examples 
Code Example 1: RabbitMQ Java API for Simulation Tool Topic Exchange Creation and 
Message Publishing .................................................................................................................. 20 
Code Example 2: RabbitMQ Java API for Simulation Tool Creation of Queue and Receiving 
Messages of User Actions ........................................................................................................ 22 
 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 9 August 31, 2019 

1 Introduction  
This deliverable defines the technical means and interfaces for interconnecting the Simulation 
Tool with the rest of the platform components, such as with the Emulation, Training and 
Visualisation Tools, and the Data Fabrication Platform (DFP). The document is the first version 
of the means of communications that will be used as guidelines in the second year of the project 
to enable the Simulation Tool interconnect with the other platform components. 

Simulation is an important part of a CTTP training session. In deliverable D5.2, the Jasima1 
discrete-event simulation library is described as the core engine of the THREAT-ARREST 
Simulation Tool. An important aspect of the Simulation Tool specification is the 
interconnection of the tool with the rest of the platform components, and its integration within 
the overall platform architecture and dataflow. 

The Simulation Tool upon initialisation creates a simulation environment where the targeted 
cyber system components and functionalities are simulated. To do so, it offers a 
Representational State Transfer (REST) Application Programming Interface (API) for proper 
lifecycle management of cyber system simulation, such as initialisation and finalisation. The 
Training Tool initialises cyber system simulation by using the corresponding API. The 
Simulation Tool starts the initialisation by retrieving the instantiation scripts from the deployed 
CTTP models. 

Upon successful cyber system emulation or simulation, the Training Tool interconnects with 
the Assurance Tool to initialise the monitoring of the trainee’s actions against the actual cyber 
system of the organisation and get the necessary data for CTTP programmes’ evaluation. The 
Assurance Tool may retrieve and update CTTP models stored in the platform for this purpose. 
The main role of the Assurance Tool is to monitor and assess the security posture of the actual 
cyber system of the organisation where the THREAT-ARREST training platform is used at. 
Given that, it has not been defined any direct communication between Simulation Tool and the 
Assurance Tool. 

We note that this deliverable has two other counterpart documents – D2.4 (THREAT-ARREST 
D2.4, 2019) and D4.3 (THREAT-ARREST 4.3, 2019) – that altogether the three documents 
(D2.4, D4.3 and D5.3) provide the overall view of THREAT-ARREST platform 
interconnections for year 1 of the project. For convenience of readers and to facilitate material 
comprehension, we recall Section 2 across the three documents with the aim to have a more 
self-contained version of the documents. 

The document is structured as following. Section 2 overviews the core means of communication 
supporting the various platform components – communications via either a message broker or 
REST interfaces. Section 3 presents in details the Simulation Tool interconnections with the 
other platform components, namely with Emulation Tool, with the Training and Visualisation 
Tools, and with the DFP. Section 4 overviews the functionality and API of the DFP, particularly 
the API for synthetic security event logs generation during a training session. Section 5 
concludes the document and outlines next steps of activities. 
 
 

                                                 
1 https://www.simplan.de/en/software-2/jasima/  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 10 August 31, 2019 

2 Message Broker and REST Communications 
This section describes the communication channels between the various platform components. 
Two main options are supported via either a message broker or REST interfaces (Fielding, 
2000). 

2.1 Message Broker-enabled Communications 
Message-oriented protocols typically focus on providing asynchronous data transfers between 
distributed devices (Hatzivasilis et al., 2018a; Hatzivasilis et al., 2018b; Lakka et al. 2019). 
Their focus is on reliable messaging, including message buffers and Quality of Service (QoS) 
facilities, controlled by centralized entities. By using the message broker-enabled 
communication, messages are passed through a central server (the Broker), enabling one-to-
many and many-to-many interactions. This offloads the computational power needed for a 
component to connect many different clients in order to exchange messages. 

The Message Queuing Telemetry Transport (MQTT) (Banks and Gupta, 2014) is one such 
message-oriented protocol, introduced by IBM in 1999 and recently standardized by the 
Organization for the Advancement of Structured Information Standards (OASIS)2, as the 
Internet of Things (IoT) developments brought it back into the limelight. It is also standardized 
as by the International Organization for Standards (ISO) and the International Electrotechnical 
Commission (IEC) as ISO/IEC 20922 (ISO/IEC, 2016). MQTT was designed as an extremely 
lightweight publish/subscribe messaging transport, for small sensors and mobile devices, 
optimized for high-latency or unreliable networks. A MQTT Broker is responsible for handling 
and organizing all communications between the various devices/components. Messages are 
published with specific topics, and each client can subscribe to various topics (though the 
Broker may require username/password authentication before allowing subscription). Topics 
are organized in a hierarchical manner, like the folder structure in a file system (e.g. “THREAT-
ARREST/CTTP/models” could be a topic where a component can subscribe to get updates on 
the CTTP models). When a client publishes a message, the Broker then relays this message to 
all clients which are subscribed to the message's topic. Thus, all interactions are asynchronous 
and clients only communicate directly with the Broker. MQTT relies on the Transmission 
Control Protocol (TCP) and secure deployments support the use of the Transport Layer Security 
(TLS) protocol. The protocol is designed to be used even on lightweight devices, like mobile 
devices and embedded systems where bandwidth is costly and minimum overhead required. It 
uses a 2-byte fixed header to control everything and exchange data as byte stream. Therefore, 
MQTT is being used widely in IoT settings. 

The Simple Text Oriented Message Protocol3 (STOMP) is a simple text-based protocol with a 
main goal to interoperate with message-oriented middleware. The protocol wire format is 
suitable to allow any STOMP client to communicate with any message broker which supports 
the protocol. The protocol runs on any TCP-enabled communications following well-defined 
commands such as CONNECT, SEND, SUBSCRIBE, UNSUBSCRIBE, BEGIN, COMMIT, 
ABORT, etc. Importantly, STOMP is designed for asynchronous message passing between 
lightweight entities/clients coming from scripting languages such as Ruby, Python, Perl or 
JavaScript. In such a client environment, simple operations are typically carried reliably such 
as reliably sending single messages or consume messages on a given destination. STOMP can 
be seen as an alternative to other open messaging protocols, such as the Advanced Message 
Queuing Protocol (AMQP) (Luzuriaga et al., 2015), but covering a small subset of commonly 
used messaging operations. Given its deign principles, STOMP has been a definitive choice for 

                                                 
2 OASIS: “MQTT 3.1.1 specification,” December 10, 2015, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html  
3 https://stomp.github.com/ ; http://stomp.github.io/stomp-specification-1.2.html  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 11 August 31, 2019 

some THREAT-ARREST components’ communications such as those of the Visualisation 
Tool. 

The Advanced Message Queuing Protocol (AMQP) (Luzuriaga et al., 2015) is an open standard 
for passing business messages between applications or organizations. AMQP is designed for 
reliable communication via message delivery guarantee primitives, like at-most-one, at-least-
once, and exactly-one delivery, and it is built upon a reliable transport protocol, such as TCP. 
The protocol consists of two core components that handle communication: the exchanges and 
the message queues. Based on pre-defined rules, the exchanges route the messages to 
appropriate queues, which can store the data and later send it to the receivers. It connects 
systems, feeds business processes with the information they need and reliably transmits onward 
the instructions that achieve their goals. The protocol is designed with more advanced features 
in mind and has more overhead than MQTT. For this reason, AMQP is not preferred for 
lightweight devices (e.g. mobile), while MQTT can be used almost anywhere. But in real world 
application development, we may need AMQP for reliable message queue while having 
lightweight devices to work with. Here is the point where RabbitMQ4 comes in. 

RabbitMQ (Richardson, 2014; Lonescu, 2015) is lightweight and easy to deploy on premises 
and in the cloud. It supports multiple messaging protocols (e.g. MQTT and AMQP). It can be 
deployed in distributed and federated configurations to meet high-scale and high-availability 
requirements. This implementation can be run on a wide variety of platforms. RabbitMQ can 
potentially run on any platform that provides a supported Erlang5 version, from multi-core 
nodes and cloud-based deployments to embedded systems. In particular, OpenStack supports 
RabbitMQ as message queue service and use it in many of its modules6. Figure 1 illustrates the 
basic steps for creating an application with RabbitMQ (Lonescu, 2015). 

 

 
Figure 1 Basic steps to create an application with RabbitMQ 

First, the components publish their profile information to the broker, including the relevant IP 
address. The broker can be either local or remote, enabling cross-domain interaction. In order 
to discover a component or service, the actuator sends a request message to all public 
components through the broker, which implements the corresponding multicasting 
functionality. The compatible entities respond to the request by sending descriptive metadata. 

                                                 
4 RabbitMQ: http://www.rabbitmq.com  
5 https://www.erlang.org  
6 https://docs.openstack.org/mitaka/install-guide-ubuntu/environment-messaging.html  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 12 August 31, 2019 

 

 
Figure 2 Sequence diagram for discovery operation 

Figure 2 illustrates a sequence diagram of the discovery operation. For asynchronous operation, 
subscribe or eventing, the messages are passed through the broker. Figure 3 illustrates a 
sequence diagram of the event subscription operation. 

 

 
Figure 3 Sequence diagram for event subscription operation 

RabbitMQ supports AMQP, MQTT, STOMP and WEBSOCKETS as message delivery 
protocols. This means that consumer and producer services can be implemented not only by 
using different platforms and languages, but also by different messaging protocols. It has a wide 
community and we can find a rich documentation on many different programming languages, 
such as Python, Java, PHP, JavaScript, Go, etc. (Richardson, 2014; Lonescu, 2015). 

The most important features of RabbitMQ for the THREAT-ARREST project include the 
guaranteed delivery and the message queue implementation (Lakka et al. 2019; Hatzivasilis et 
al., 2019). To sum-up, we choose the RabbitMQ broker for the internal THREAT-ARREST 
platform communications, as: 

 It is an open source message queuing system. 

 It constitutes an ideal choice for interoperability between applications and tools of 
different protocols and between different programming languages. 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 13 August 31, 2019 

 The fact that we can publish messages into one environment via one protocol and 
consume them via one or more other protocols (simultaneously if necessary). 

 It is a popular open source message queuing system that implements the AMQP. 

 It well describes all supported protocols and their purpose. 

 There is an active community and RabbitMQ has been utilized in very different 
application areas. 

 RabbitMQ offers libraries/APIs available in many programming languages7 allowing, 
with just a few lines of code, the creation of communication channels to a broker, the 
creation of queues, and publishing and receiving messages on channels and queues 
respectively. 

 It is fully supported by OpenStack8 the underpinning technology of the THREAT-
ARREST Emulation Tool. 

2.1.1 Standard RabbitMQ Message Flow 
In the following, we will overview the basic message flow concept of RabbitMQ to facilitate 
the presentation in the following sections. In RabbitMQ, the producer’s messages are not 
published directly to a consumer but instead, the producer sends messages to an Exchange. An 
Exchange is a message routing agent responsible for routing of messages to different queues. 
An Exchange accepts messages from the producer application and routes them to message 
queues with the help of header attributes, bindings, and routing keys (Johansson, 2015). 

 
Figure 4. Standard RabbitMQ message flow 

Figure 4 shows the standard RabbitMQ message flow. A producer application publishes a 
message to a given (selected) Exchange. When the Exchange receives the message, it is 
responsible for routing the message to an appropriate Queue(s). A Binding has to be set up 
                                                 
7 https://www.rabbitmq.com/getstarted.html  
8 https://docs.openstack.org/mitaka/install-guide-ubuntu/environment-messaging.html  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 14 August 31, 2019 

between a Queue and a given Exchange. In our case, there are bindings to three different Queues 
from the given Exchange. The Exchange routes the message to the Queues according to the 
Bindings specified. The messages stay in a Queue until they are handled by a consumer 
application.  

A Binding is a "link" that is set up to bind a Queue to an Exchange. A routing key is a message 
attribute set up by the producer that allows an Exchange to look at this key and decide how to 
route the message to Queues depending on the Exchange type. 

There are four different types of Exchange that route messages differently using different 
parameters and bindings setups. The most relevant to the THREAT-ARREST needs is the 
Exchange of type Topic. 

2.1.2 RabbitMQ Topic Exchange 
A Topic Exchange routes messages to Queues based on wildcard matches between the routing 
key specified in the message header and the routing pattern specified by the Queue binding 
(Johansson, 2015). Given the routing pattern of each Queue binding, messages are routed to 
one or many Queues. 

The consumer indicates in which Topics is interested in, such as subscribing to a feed of a 
specific THREAT-ARREST platform tool. The consumer creates a Queue and sets up a binding 
with a given routing pattern to the selected Exchange. All messages with a routing key that 
match the routing pattern are routed to the Queue and stay there until the consumer consumes 
the message. 

The routing key is a period (‘.’) delimited list of words, such as 
EmulationTool.ehealthscenario1.vm1 which identifies all events of cyber system emulation that 
are monitored at the Virtual Machine (VM) ‘vm1’ of the eHealth scenario. 

A routing pattern of a Queue binding can contain an asterisk ‘*’ to indicate a match of words 
in a specific position of the routing key. For instance a routing pattern for a Queue1 can be 
*.ehealthscenario1.* indicating all events from the cyber system of the eHealth scenario 
regardless of whether these are from simulation or emulation and regardless of what particular 
VMs they originated from.   

A hash/pound symbol ‘#’ indicates match on zero or more words. For instance a routing pattern 
EmulationTool.# will match any routing keys beginning with EmulationTool resulting in 
capturing all events from cyber system emulation regardless of the specific scenarios currently 
used. 

2.2 REST Communications  
Nevertheless, except from the asynchronous communication through a broker, we also need 
synchronous communication options where the various modules can exchange data directly. 
Protocols that follow the REST architecture are adopted for this. RESTful implementations 
typically use the Hypertext Transfer Protocol (HTTP). In general, the REST solutions follow a 
request/response model, where a client may interact with the server using a subset of the HTTP 
methods, namely using GET, PUT, POST and DELETE on the server's resources (see Figure 5 
below). RESTful systems target interoperability, performance and scalability for increasing 
resources consumption. They target reusability of components which can be managed or 
updated without affecting the system as a whole, even while it is running.  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 15 August 31, 2019 

 
Figure 5 The REST architecture and the supported operations 

For secure information transmission, the extension of the Hypertext Transfer Protocol Secure 
(HTTPS) is widely-used. The pure communication protocol (HTTP) is safeguarded by 
encrypting the data with the TLS protocol. However, HTTP/HTTPs are not appropriate for 
lightweight applications with resource, bandwidth, and/or energy restrictions. 

Thus, the Internet Engineering Task Force (IETF) Constrained RESTful environments (CoRE) 
Working Group presented the Constrained Application Protocol (CoAP), now an IETF standard 
(Shelby et al., 2014). CoAP is a specialized web transfer protocol for use with constrained nodes 
and constrained networks in the IoT, aiming to maintain compatibility with the existing Internet 
infrastructure, through simple proxies. The protocol is often referred to as “the HTTP for the 
Internet of Things”. CoAP messages are transported over the User Datagram Protocol (UDP). 
Moreover, basic publish/subscribe interactions are also supported, as, by extending the HTTP 
GET method, a client can observe a specific resource. For security, CoAP applications support 
the Datagram Transport Layer Security (DTLS). 

 

 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 16 August 31, 2019 

3 Simulation Tool Interconnections 
We will overview the communications of the Simulation Tool with the relevant platform 
components. Particularly, the Simulation Tool interconnects with the: 

 Training Tool on the state of the simulated cyber system components necessary for the 
assessment of trainees’ performance; 

 Emulation Tool to trigger actions/events on a cyber system emulation environment, and 
enable the generation and realisation of hybrid networks of simulated and emulated 
components; 

 Visualisation Tool on the state of the simulated cyber system for progressive in-browser 
visualisation during a training session; 

 Data Fabrication Platform to request fabrication of synthetic security event logs for the 
needs of a cyber system simulation, and consequently access those logs during a training 
session. 

 
Figure 6: THREAT-ARREST Platform Components Interconnection – Simulation Tool View 

Figure 6 shows the THREAT-ARREST platform communications with a particular focus on 
the Simulation Tool communications. RabbitMQ is selected as the Message Queue Broker for 
the THREAT-ARREST platform to enable all asynchronous communication needs among the 
platform components. Particularly, all communications of the Simulation Tool with the 
Training and Visualisation Tools, on the state of a simulated cyber system, are asynchronous 
and mediated through the broker. 

The Simulation Tool communicates with the message broker using the STOMP9 protocol over 
TCP/IP. We note that one of the aspects for choosing the RabbitMQ broker was the multi-
protocol support provided by the recent versions of the broker10. This decision addressed an 
important interoperability issue on the protocol level (e.g. (Soultatos et al., 2019)) between the 
THREAT-ARREST platform components. 

                                                 
9 STOMP: http://stomp.github.io/ 
10 RabbitMQ protocols: https://www.rabbitmq.com/protocols.html 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 17 August 31, 2019 

There is a REST API provided by the Simulation Tool at the Simulation Controller to allow 
cyber system initialisation for a given scenario. Particularly, the Training Tool upon a scenario 
initialisation, initialises all platform components in a given order through their dedicated REST 
APIs. Input to the Simulation Tool’s initialisation API is the simulation model defined in a 
given CTTP and a training session information including among other things the Session ID, 
User ID, User Role, etc. For more details, the CTTP simulation sub-model, which is generated 
by the Assurance Tool, is documented in the deliverable D3.1 “CTTP Models and Programmes 
Specification Language”, while the extraction of the instantiation scripts from the sub-model 
and the initialization of simulation components is presented in the deliverable D5.2 “Simulated 
components and network generator v1”. 

3.1 Interconnection with the Emulation Tool 
For a given scenario and training session, the Simulation Tool is interconnected with the 
emulated (part of) a cyber system through direct TCP/IP-based communications, as depicted in 
Figure 6. In this way, the Simulation Tool (i.e., the Simulation Controller) can interact with the 
emulated cyber system environment and perform/trigger corresponding actions on the 
environment necessary for the training scenario. For instance, triggering specific network-level 
connections to an IoT Gateway (hosted in a VM of the emulated environment) coming from the 
simulation of a compromised IoT device. 

To realise such interconnections, as already discussed in D2.4, upon a training session 
initialisation, the Emulation Tool is initialised first. The Emulation Tool instantiates not only 
the environment (infrastructure) for cyber system emulation but also the VM of the Simulation 
Tool in the same context (i.e. subnet or network) of the VMs of the emulation environment. We 
note that the Emulation Controller does not initialise the cyber system simulation for a given 
scenario but only the VM with the corresponding network, compute and storage resources. Such 
initialisation is necessary to ensure an environment of the Simulation Tool properly 
interconnected with the emulated cyber system (i.e. interconnected with the VMs of the 
emulated cyber system environment) and the external network. 

We note that in case of a training scenario with cyber system simulation only, the Emulation 
Controller is still invoked to initialise the VM of the simulation engine but without any 
emulation environment initialisation and interaction. 

3.2 Interconnection with the Training and Visualisation Tools 
The Simulation Tool interconnects with the Training and Visualisation Tools on the state of the 
cyber system being simulated. These are asynchronous communications through the RabbitMQ 
message broker. All related events and state information of the simulated cyber system are 
communicated to both the Training Tool and the Visualisation Tool through the message 
broker. 

These events and state information are used for different purposes – the Training Tool for user 
performance assessment and the Visualisation Tool for progressive in-browser visualisation of 
the cyber system environment. Given the different purposes, each tool needs to filter and 
process only those events relevant to its scope. 

To address the different levels of events/state information needed by the platform tools for their 
operation, it was decided to use RabbitMQ Exchanges of type Topic. Similar to the discussed 
means in D2.4 and D4.3, one Exchange of type Topic is created for the Simulation Tool to serve 
all communications of state information for all training scenarios and training sessions. This 
Topic Exchange is created on set up of the platform and its initial configuration. 

Importantly, all messages sent by the Simulation Tool to its predefined Exchange are to bear a 
well formed routing key. It was agreed to use the following structure of the routing key: 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 18 August 31, 2019 

 

SimulationTool.<ScenarioID>.<TrainingSessionID>[.<CyberSystemComponentID>]+.<Cyber
SystemComponentAttributeID> 

 

The string SimulationTool is a constant used to indicate the name of the THREAT-ARREST 
platform component source of the message. The <ScenarioID> refers to the scenario 
identifier from the CTTP model. The <TrainingSessionID> refers to the identifier of the 
training session as managed by the Training Tool/Dashboard. Upon Simulation Tool 
initialisation, the actual training session ID is given along the CTTP simulation sub-model. 

The <CyberSystemComponentID> refers to the identifier of a component of the cyber system 
that is simulated in a training session, such as an IoT device, sensor, actuator, IoT gateway, 
network switch, etc. The brackets with an upper index plus “[..]+” indicate the expression 
“.<CyberSystemComponentID>” can be repeated one or more times depending on the 
complexity of the cyber system simulated. 

The <CyberSystemComponentAttributeID> refers to the identifier of an attribute of a 
component of the cyber system that is simulated in a training session, such as an IoT device’s 
state (critical/normal/aborted), or sensors’ current temperature or humidity measured by it, etc. 
The routing key of a message can refer to only one attribute of a component. 

Given first-year discussions on the topic, the <CyberSystemComponentAttributeID> is 
mandatory as it identifies (qualifies) which aspect of the cyber system component is simulated, 
and which of the routed messages are referred to it. 

It is important to note that the identifier information for the <CyberSystemComponentID> 
and <CyberSystemComponentAttributeID> are obtained from the CTTP (sub-)model. In 
the next version of the deliverable a formal Backus-Naur Form11 (BNF) specification will be 
provided for the routing key structure. 

As we said, there is one Exchange (CS_Simulation_State) pre-defined for all messages sent by 
the Simulation Tool that will outreach all relevant components of the platform, including the 
Training and Visualisation Tools. 

To do so, it was agreed that upon initialisation of the Training and Visualisation Tools for a 
given scenario and training session, each tool dynamically creates Queues bound to the 
CS_Simulation_State. It is essential that the binding for each Queue follows the structure of the 
routing key discussed above. Asterisk ‘*’ and pound ‘#’ can be used as placeholders for a single 
word, or zero or more words, respectively. 

For instance, the binding (matching pattern) for a Queue of the Visualization Tool, would be 
the following one: 

 

SimulationTool.<ScenarioID>.<TrainingSessionID>.# 

 

The <ScenarioID> refers to the identifier of the scenario in the CTTP model. The 
<TrainingSessionID> refers to the identifier of the current training session the Visualisation 
Tool is initialised for. The binding above means that the Queue will receive all messages sent 

                                                 
11 https://en.wikipedia.org/wiki/Backus–Naur_form  



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 19 August 31, 2019 

by the Simulation Tool (to CS_Simulation_State) for a given scenario and session ID regardless 
of what simulated cyber system components they relate to. In this case, the Visualisation Tool 
will receive all messages and parse those on the application level to visualise their value in the 
Dashboard. 

However, the Visualisation Tool may also subscribe for messages specific to a component of 
the cyber system, for instance with the following binding key for a Queue: 

 

SimulationTool.<ScenarioID>.<TrainingSessionID>.<CyberSystemComponentID>.# 

 

In this case, messages for all attributes of a cyber system component will be received. The 
Visualisation Tool may even subscribe to messages regarding a specific attribute of a simulated 
cyber system component. In such granularity, it needs to declare a queue per each component 
and its attribute of interest. 

In the same way, upon initialisation, the Training Tool dynamically declares (creates) Queues 
either per training session or per component or per attribute of a component of the simulated 
cyber system. 

 
Figure 7: Simulation Tool Interconnection with the Training and Visualisation Tools 

Figure 7 illustrates the broker-based communications as discussed above with possible queue 
binding keys. The abbreviation TT stands for Training Tool, VT for Visualisation Tool, and CS 
for cyber system. As we emphasized, it is essential to define the scope of each queue and its 
proper binding keys for the matching. 
 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 20 August 31, 2019 

 
import com.rabbitmq.client.Channel; 
import com.rabbitmq.client.Connection; 
import com.rabbitmq.client.ConnectionFactory; 
 
public class EmitCSEmulationState { 
 
  private static final String EXCHANGE_NAME = "CS_Simulation_State"; 
 
  public static void main(String[] argv) throws Exception { 
   
    ConnectionFactory factory = new ConnectionFactory(); 
    factory.setHost("localhost"); 
    try (Connection connection = factory.newConnection(); 
         Channel channel = connection.createChannel()) { 
 
        channel.exchangeDeclare(EXCHANGE_NAME, "topic"); 
 
        String routingKey = "SimulationTool.Energy_BruteForceSSH.TrSess_98374767.Main-
Net.Sensor1.CurrentTemperature"; 
        String message = "25.5"; 
 
        channel.basicPublish(EXCHANGE_NAME, routingKey, null, message.getBytes("UTF-
8")); 
    } 
  } 
}  

Code Example 1: RabbitMQ Java API for Simulation Tool Topic Exchange Creation and Message 
Publishing 

Code Example 1 shows how the Simulation Tool can use the Java library/API provided by 
RabbitMQ12 to create an Exchange of type Topic and publish a message with a routing key 
following the format presented above. 

In the example, the following routing key is used: 
SimulationTool.Energy_BruteForceSSH.TrSess_98374767.MainNet.Sensor1.CurrentTemperat
ure 

The message in the example is a temperature measured 25.5 Celsius degrees. 

Give the example above, a possible binding key for a queue for all messages of a training 
session of cyber system simulation would be: 
SimulationTool.Energy_BruteForceSSH.TrSess_98374767.# 

An example of a possible binding key of a queue for all messages regarding a specific simulated 
component of a training session would be: 
SimulationTool.Energy_BruteForceSSH.TrSess_98374767.MainNet.Sensor1.# 

An example of a possible binding key of a queue for all messages regarding a specific attribute 
of a cyber system component simulation would be: 
SimulationTool.Energy_BruteForceSSH.TrSess_98374767.MainNet.Sensor1.CurrentTemperat
ure 

We refer to the deliverable D4.3 for more details on how the Training and Visualisation Tools 
subscribe to the broker and receive messages from the Simulation Tool. This deliverable defines 
the complementary view of how the Simulation Tool publishes messages to the broker. 

3.3 Interconnection with the Visualisation Tool on User Actions 
The deliverable D4.3 defines the message broker means to enable the Visualisation Tool to 
communicate with the Simulation Tool when user actions are performed via the Graphical User 

                                                 
12 RabbitMQ tutorials: https://www.rabbitmq.com/tutorials/tutorial-five-java.html 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 21 August 31, 2019 

Interface (GUI) to the simulated cyber system components. In the rest of this subsection, we 
recall these communications with a focus on the Simulation Tool. 

 
Figure 8: Interconnection of Simulation Tool with Visualisation Tool on User Actions 

Figure 8 shows how the Simulation Tool interconnects with the Visualisation Tool on user 
actions performed. An Exchange of type Topic is predefined for the Visualisation Tool that 
interfaces all communications of user actions by the Visualisation Tool for all scenarios and 
training sessions. Upon Simulation Tool initialisation per training session, the Simulation Tool 
dynamically declares queues (subscribes) to messages sent by the Visualisation Tool. Possible 
binding key options are shown in the figure depending on the needs of the Simulation Tool. 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 22 August 31, 2019 

 
import com.rabbitmq.client.Channel; 
import com.rabbitmq.client.Connection; 
import com.rabbitmq.client.ConnectionFactory; 
import com.rabbitmq.client.DeliverCallback; 
 
public class ReceiveSimVisUserActions { 
 
  private static final String EXCHANGE_NAME = "Sim_Visualisation_User_Actions "; 
 
  public static void main(String[] argv) throws Exception { 
     
    ConnectionFactory factory = new ConnectionFactory(); 
    factory.setHost("localhost"); 
    Connection connection = factory.newConnection(); 
    Channel channel = connection.createChannel(); 
 
    String queueName = channel.queueDeclare().getQueue(); 
 
    String bindingKey = "VisualisationTool.Energy_BruteForceSSH.TrSess_98374767.Main-
Net.Sensor1"; 
     
    channel.queueBind(queueName, EXCHANGE_NAME, bindingKey); 
 
    System.out.println(" [*] Waiting for messages. To exit press CTRL+C"); 
 
    DeliverCallback deliverCallback = (consumerTag, delivery) -> { 
        String message = new String(delivery.getBody(), "UTF-8"); 
        System.out.println(" [x] Received '" + 
            delivery.getEnvelope().getRoutingKey() + "':'" + message + "'"); 
    }; 
    channel.basicConsume(queueName, true, deliverCallback, consumerTag -> { }); 
  } 
}  
Code Example 2: RabbitMQ Java API for Simulation Tool Creation of Queue and Receiving Messages 

of User Actions 

Code Example 2 shows the use of RabbitMQ Java library/API to connect to a broker, declare a 
queue bound to the Exchange for user actions and receive messages routed to the queue. 
Particularly, the following binding key is used 
VisualisationTool.Energy_BruteForceSSH.TrSess_98374767.MainNet.Sensor1. In this case, 
the Simulation Tool will receive all messages sent by the Visualisation Tool for user actions 
regarding Sensor1 at the main net simulation. 

Following this example and upon initialisation, the Simulation Tool will need to dynamically 
declare a queue per each component of the simulated cyber system of interest in order to receive 
messages of user actions for these components. Alternatively, it may declare one queue per all 
user actions of all simulated components in a training session as shown in Figure 8. 

3.4 Interconnection with the Data Fabrication Platform 
The Simulation Tool interconnects with the Data Fabrication Platform (DFP) for the needs of 
dynamic security event logs generation during a training session. In such cases, similar to the 
needs of the Emulation Tool as discussed in D2.4, the Simulation Tool uses the REST API of 
the DFP to request and access the generated synthetic data. Section 4 overviews the DFP 
functionality and API. 

It is under discussion whether to interface the results of data fabrication for each scenario with 
all other platform components, including the Simulation Tool, through a Git repository 
accessible by all platform components. 

In any case, the RabbitMQ broker will be used to notify all relevant platform components when 
the data fabrication process is completed, and where the data is available in the Git repository 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 23 August 31, 2019 

(under a specific URI) so that the other components can access it. Alternatively, the DFP can 
use the broker to notify other tools when the data is ready along with the specific identifier, so 
that the tools can use the dedicated REST API to obtain the data. 

Similar to the above described message broker means, a dedicated Exchange will be created for 
the DFP so that all other components upon initialisation, including the Simulation Tool, 
dynamically create a Queue bound to this Exchange to be informed when the requested data is 
fabricated. 

 

 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 24 August 31, 2019 

4 Data Fabrication Platform Functionality and API 
IBM’s Data Fabrication Platform (DFP) (IBM, 2017) is a web-based central platform for 
generating high-quality structured data for testing, development, and training. The methodology 
used is termed “model-based rule-guided fabrication”. DFP consumes data declaration 
directives (data model or metadata) along with user-defined rules as input, creates a Constraint 
Satisfaction Problem (CSP), and solves the problem using a proprietary CSP Solver, which has 
been used for verifying IBM hardware systems for over a decade. The solver finds a consistent 
pseudo-random solution satisfying all the data definition and constraint requirements. Finally, 
the generated data is populated in target databases and/or files. A detailed description of the 
DFP’s functionality for the generation of synthetic event logs is given in deliverable D5.1 
(THREAT-ARREST D5.1, 2019).  

4.1 IBM Data Fabrication Platform enhancement 
To support the THREAT-ARREST requirements, IBM Data Fabrication Platform is being 
enhanced with the ability to generate sequences of simulated cyber-events in general, and 
synthetic security event log files in particular. For such a use, the DFP needs to be properly 
initialized (presumably, based on definitions found in the CTTP model) before a user or a client 
sub-system can get any synthetic log file. 

4.1.1 Cyber Network and Scenario Definition 
First, a virtual network topology should be defined according to a given CTTP model. This 
includes the declaration of network-attached computers, switches, and other relevant hardware. 
Each hardware node should be decorated with properties and “installed” software applications 
and services. User-provided rules and constraints should complement the network definition to 
guide the fabrication engine, how to choose values for hardware and software properties. 

Then, an Event Scenario, built of connected Actions and Activities, should be defined. In case 
a cyber-attack log is required, an attack Scenario should be defined over the virtual Network. 

4.1.2 Log Fabrication 
After being properly configured with the Network topology and Scenario definition, DFP 
creates a CPS based on those definitions, solves the Problem with the CSP Solver, producing 
pseudo-random property and function call parameter values, satisfying all the definitions, rules, 
and constraints. 

Finally, DFP simulates the Scenario, calling in application functions, declared by the Scenario 
actions, propagating events from one network node to another, and stores the resulting event 
messages down to some persistent storage, producing event log files. 

4.2 THREAT-ARREST Requirements for Synthetic Data 
Two types of synthetic data, required for the THREAT-ARREST project, have been identified 
so far: 

(i) static general-purpose synthetic data, such as health records, for the needs of 
setting/performing a given training scenario; 

(ii) static or dynamic (interactive) security (event) logs for cybersecurity training in the 
context of a training scenario, such as security logs regarding malicious (anomalous) 
accesses to a server hosting a database of health records. 

There is no need of any special DFP API to fabricate static data for case (i). Such data can be 
modelled in advance via the DFP web-based user interface and fabricated off-line, even before 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 25 August 31, 2019 

any training session starts. Fabricated data can be populated in well-known databases and/or 
predefined file locations to be consumed by other THREAT-ARREST components. 

As far as security event logs are concerned, the DFP will be enhanced and the new functionality 
accessible via a log fabrication REST API is described in the following section. 

4.3 Data Fabrication Platform – Log Fabrication API 
Before one can get any security log, the DFP needs to be properly initialized and configured as 
it is described in the subsection 4.1.1. Then, a fabrication and simulation process as described 
in the subsection 4.1.2 should be controlled and monitored. Finally, after fabrication has been 
successfully completed, the fabricated log files need to be fetched out and consumed by a client 
sub-system. We note that the APIs described below will be initialised based on a given CTTP 
model specification. 

4.3.1 Cyber Network Definition API 
In the following we overview the API defined for a specification of a cyber network.  

 add/edit/delete sub-network – functions enabling the creation, modification, and 
removal of sub-nets (folder-like entities, enabling grouping of network nodes and other 
sub-nets in a hierarchical manner) 

 add/edit/delete network node – functions enabling the creation, modification, and 
removal of a network node 

 add/edit/delete property – functions enabling the creation, modification, and removal of 
hardware or software properties (in addition to predefined ones) 

 add/edit/delete constraint – functions enabling the creation, modification, and removal 
of a constraint over hardware and/or software properties 

 connect/disconnect nodes – functions enabling the connection and disconnection of 
network nodes to create and modify a network graph of connected nodes 

4.3.2 Scenario Definition API 
In the following we overview the API defined for a specification of a targeted scenario.  

 add/edit/delete activity – functions enabling the creation, modification, and removal of 
scenario activities (folder-like entities, enabling grouping of actions and other sub-
activities in a hierarchical manner) 

 add/edit/delete action – functions enabling the creation, modification, and removal of a 
scenario action 

 add/edit/delete constraint – functions enabling the creation, modification, and removal 
of a constraint over action function call parameters 

 link/unlink actions – functions enabling the connection and disconnection of scenario 
actions and activities to create and modify a scenario flow (a graph of connected 
scenario items) 

4.3.3 Log Fabrication API 
In the following we overview the API defined to generate and access fabricated data.  

 fabricate – a function starting the fabrication session 

 get fabrication status – a function providing status of the current fabrication session 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 26 August 31, 2019 

 get fabrication data – a function providing output data generated in the last session 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 27 August 31, 2019 

5 Conclusions and Next Steps 
This document is a first deliverable documenting the work done in task T5.4. It presents the 
technical means used by the Simulation Tool to interconnect with the other platform 
components primarily using a REST API or message-broker-enabled communications. The 
results of this first version will guide the Simulation Tool integration activities in the second 
year of the project. There are two other deliverables that complement this document, the 
deliverables D2.4 and D4.3. All three deliverables together define the overall view of 
components’ interconnections of the THREAT-ARREST platform. 

The adoption of REST interfaces and the RabbitMQ message broker allowed us to address 
interoperability not only on the API level but on the protocol level as well (see Cameron, 2012). 

Next steps in the second year of the project target will address: 
 Technical specification of interfaces (APIs) for the Simulation Tool communications 

with other platform components both through REST API and those through RabbitMQ 
broker. We note that the technical specification of such API is subject to the design and 
technical development of individual component’s functionalities. 

 Interoperability on the message level to ensure the syntax and semantics of messages 
(e.g., a component’s state simulated, or specific sensor’s simulated measurements, or 
any other components’ simulated attributes, etc.) sent by the Simulation Tool are 
understandable by the Training and Visualisation Tools. 

We note that the concluding remarks and next steps are common to the three documents D2.4, 
D4.3, and D5.3 as they altogether (in a complementary way) address the mechanisms and 
interfaces for interconnecting all THREAT-ARREST platform components. 

The steps above will be particularly driven by the activities of WP6 on platform integration and 
interconnection, which officially starts in Month 13 of the project. 
 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 28 August 31, 2019 

6 References 
[1] Banks, A. and Gupta, R. (2014) OASIS Message Queuing Telemetry Transport (MQTT), 

version 3.1.1, OASIS, pp. 1-81, http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf . 

[2] Cameron, B. (2012) The Polyglot Rabbit: Examples of Multi-Protocol Queues in RabbitMQ. 
Available at http://assortedrambles.blogspot.com/2012/11/the-polygot-rabbit.html  

[3] Fielding, Roy Thomas (2000). "Chapter 5: Representational State Transfer (REST)". 
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.). 
University of California, Irvine. 
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm  

[4] Hatzivasilis, G., et al. (2019). Secure Semantic Interoperability for IoT Applications with 
Linked Data. IEEE Global Communications Conference (GLOBECOM 2019), IEEE, 
Waikoloa, HI, USA, 9-13 December 2019, pp. 1-7. 

[5] Hatzivasilis, G., Fysarakis, K., Soultatos, O., Askoxylakis, I., Papaefstathiou, I. and Demetriou 
G. (2018a) The Industrial Internet of Things as an enabler for a Circular Economy Hy-LP: A 
novel IIoT Protocol, evaluated on a Wind Park’s SDN/NFV-enabled 5G Industrial Network, 
Computer Communications – Special Issue on Energy-aware Design for Sustainable 5G 
Networks, Elsevier, vol. 119, pp. 127-137. 

[6] Hatzivasilis, G., et al., (2018b). The Interoperability of Things. 23rd IEEE International 
Workshop on Computer Aided Modeling and Design of Communication Links and Networks 
(CAMAD 2018), IEEE, Barcelona, Spain, 17-19 September 2018, pp. 1-7. 

[7] IBM, “Create high-quality test data while minimizing the risks of using sensitive 
production data.” IBM InfoSphere Optim Test Data Fabrication, IBM, 2017, 
https://www.ibm.com/il-en/marketplace/infosphere-optim-test-data-fabrication 

[8] ISO/IEC 20922 (2016). “Information technology – Message Queuing Telemetry Transport 
(MQTT) v3.1.1,” June 15, 2016, https://www.iso.org/standard/69466.html . 

[9] Johansson, L. (2015) RabbitMQ Exchanges, routing keys and bindings. CloudAMQP Blog. 
Available at https://www.cloudamqp.com/blog/2015-09-03-part4-rabbitmq-for-beginners-
exchanges-routing-keys-bindings.html . 

[10] Lakka, E., et al. (2019). End-to-End Semantic Interoperability Mechanisms for IoT. 24th 
IEEE International Workshop on Computer Aided Modeling and Design of Communication 
Links and Networks (CAMAD 2019), IEEE, Limassol, Cyprus, 11-13 September 2019, pp. 1-
6. 

[11] Lonescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ, 
14th RoEduNet International Conference – Networking in Education and Research (RoEduNet 
NER), IEEE, Caiova, Romania, Sept. 24-26, pp. 132-137. 

[12] Luzuriaga, J. E., Perez, M., Boronat, P., Cano, J. C., Calafate, C. and Manzoni, P. 
(2015). A comparative evaluation of AMQP and MQTT protocols over unstable and mobile 
networks, 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), 
IEEE, pp. 1-6. 

[13] Richardson, A. (2014) RabbitMQ Essentials, PACKT Publishing, pp. 1-182. 
http://www.spooch.dk/Ebooks/Programming/RabbitMQ%20Essentials%20%5BeBook%5D.p
df  

[14] Shelby, Z., Hartke, K. and Bormann, C. (2014). The constrained application protocol 
(CoAP), IETF, RFC 7252. https://tools.ietf.org/html/rfc7252 . 

[15] Soultatos, O., et al., 2019. Pattern-Driven Security, Privacy, Dependability and 
Interoperability Management of IoT Environments. 24th IEEE International Workshop on 
Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 
2019), IEEE, Limassol, Cyprus, 11-13 September 2019, pp. 1-6. 



TREAT-ARREST D5.3 DS-SC7-2017/№ 786890
 

THREAT-ARREST 29 August 31, 2019 

[16] THREAT-ARREST D1.3. (2019). THREAT-ARREST platform’s initial reference 
architecture. THREAT-ARREST Project. Available at https://www.threat-arrest.eu/ 

[17] THREAT-ARREST D2.4 (2019). Emulation tool interoperability module v1. 
THREAT-ARREST Project. Available at https://www.threat-arrest.eu/ 

[18] THREAT-ARREST D4.3 (2019). Training and Visualisation tools IO mechanisms v1. 
THREAT-ARREST Project. Available at https://www.threat-arrest.eu/ 

[19] THREAT-ARREST D5.1 (2019). Real event logs statistical profiling module and 
synthetic event log generator v1. THREAT-ARREST Project. Available at https://www.threat-
arrest.eu/ 

 


