
 
 

Cyber Security PPP: Addressing Advanced Cyber Security Threats and 
Threat Actors  

 

 

 
Cyber Security Threats and Threat Actors Training - Assurance Driven 

Multi-Layer, end-to-end Simulation and Training 

 
D5.4: Simulated components network execution module v1† 

Abstract: This document is the result of the first iteration of task “T5.3 – Simulated components 
network execution” activities. This task develops the simulator execution module, that will 
carry out the execution of the simulated Components’ network as derived from the task “T5.1 
– Simulation Environment”. This mainly includes the caption of events within the simulated 
components as the training process evolves and the notification of the Training and 
Visualization Tools. 

 
Contractual Date of Delivery  30/11/2019 
Actual Date of Delivery  30/11/2019 
Deliverable Security Class  Public 
Editor  Torsten Hildebrandt, Dirk Wortmann 

(SIMPLAN) 
Contributors George Hatzivasilis (FORTH), 

Michael Vinov (IBM), 
Marinos Tsantekidis (TUBS) 

Quality Assurance Hristo Koshutanski (ATOS), 
Martin Kunc (CZNIC) 

                                                 
† The research leading to these results has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 786890. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 2 November 30, 2019 

The THREAT-ARREST Consortium 
Foundation for Research and Technology – Hellas (FORTH) Greece 
SIMPLAN AG (SIMPLAN) Germany 
Sphynx Technology Solutions (STS) Switzerland 
Universita Degli Studi di Milano (UMIL) Italy 
ATOS Spain S.A. (ATOS) Spain 
IBM Israel – Science and Technology LTD (IBM) Israel 
Social Engineering Academy GMBH (SEA) Germany 
Information Technology for Market Leadership (ITML) Greece 
Bird & Bird LLP (B&B) United Kingdom 
Technische Universität Braunschweig (TUBS) Germany 
CZ.NIC, ZSPO (CZNIC)  Czech Republic 
DANAOS Shipping Company LTD (DANAOS)  Cyprus 
TUV HELLAS TUV NORD (TUV) Greece 
LIGHTSOURCE LAB LTD (LSE) Ireland 
Agenzia Regionale Strategica per la Salute ed il Sociale 
(ARESS) 

Italy 

 
  



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 3 November 30, 2019 

Document Revisions & Quality Assurance 
 
Internal Reviewers  

1. Hristo Koshutanski (ATOS), 
2. Martin Kunc (CZNIC) 

 
Revisions 

Version Date By Overview 
0.5, 0.6 20/11/2019 Editor Changes as suggested by internal review; 

moved section 2 to 3.3 
0.4 07/11/2019 Editor Added contents of Section 3 
0.3 01/11/2019 Michael Vinov 

(IBM) 
Added Section 2 

0.2 01/11/2019 George Hatzivasilis 
(FORTH) 

Added Section 4 

0.1 20/09/2019 Editor First Draft with ToC 
 

  



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 4 November 30, 2019 

Executive Summary 

This deliverable is the initial outcome of the task “T5.3 – Simulated components network 
execution”. Here, we develop the simulator execution module as a part of the Simulation Tool 
of the THEAT-ARREST platform. This task is complementary to the task “T5.1 – Simulated 
components’ network generator” (see the deliverable “D5.2 – Simulated components and 
network generator v1”). While T5.1 focuses in the specification and establishment of the 
simulation model required for the Cyber Threat and Training Preparation (CTTP) model-driven 
training, T5.3 is related to the dynamic aspects of executing the simulation as part of an ongoing 
training session. The documented module captures the various events within each simulated 
component and notifies accordingly other involved simulated/emulated components as well as 
the Training and Visualization tools. Task T5.3 started in month 4, therefore this deliverable 
documents the work done from months 4 to 15. At the end of the task’s activities in month 30, 
this deliverable will be updated and extended in “D5.7 – Simulated components network 
execution module v2”. 

 
 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 5 November 30, 2019 

Table of Contents 

1 INTRODUCTION ....................................................................................................................................... 8 

2 EVENTS MANAGEMENT IN THE SIMULATION TOOL .................................................................. 9 
2.1 DEFINING THE BEHAVIOUR OF SIMULATED COMPONENTS ......................................................................... 9 
2.2 SIMULATION MODELLING/EXECUTION BY EXAMPLE .............................................................................. 11 
2.3 EXECUTING REAL AND SYNTHETIC EVENT LOGS ...................................................................................... 14 

3 CONNECTION TO CTTP ....................................................................................................................... 17 
3.1 INSTANTIATING A SIMULATED NETWORK ................................................................................................ 17 
3.2 CAPTURING AND REPORTING THE SIMULATION EVENTS ........................................................................... 19 
3.3 TRAINEE’S EVALUATION.......................................................................................................................... 19 
3.4 SUMMARY OF THE STEPS FOR THE MODEL-DRIVEN TRAINING PROCESS ................................................... 20 

4 CONCLUSION .......................................................................................................................................... 22 

REFERENCES .................................................................................................................................................... 23 
 
 
  



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 6 November 30, 2019 

List of Abbreviations 
API Application Programming Interface 

CSP Constraint Satisfaction Problem 

CTTP Cyber Threat and Training Preparation 

DFP Data Fabrication Platform 

GUI Graphical User Interface 

GPS Global Positioning System 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

IoT Internet of Things 

JVT Jasima Visualization Tool 

REST Representational State Transfer 

STOMP Simple Text Oriented Messaging Protocol 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UDP User Datagram Protocol 

UML Unified Modelling Language 

VM Virtual Machine 

WP Work Package 

XML Extensible Markup Language 
  



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 7 November 30, 2019 

List of Figures 
Figure 1 Simulation Tool architecture and external communications (see D1.3) ...................... 9 
Figure 2 General architecture of the Jasima software library for discrete-event simulation (see 
D5.2) ......................................................................................................................................... 10 
Figure 3 Simulated Sensor Component (1/4) ........................................................................... 11 
Figure 4 Simulated Sensor Component (2/4) ........................................................................... 11 
Figure 5 Simulated Sensor Component (3/4) ........................................................................... 12 
Figure 6 Simulated Sensor Component (4/4) ........................................................................... 12 
Figure 7 Example use of the component in a training scenario ............................................... 13 
Figure 8 Example Visualization View of the JVT Showing the State of Simulated Sensors .. 14 
Figure 9 The UML class diagram of the simulated on-deck equipment (Source D5.2) .......... 17 
 
  



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 8 November 30, 2019 

1 Introduction 
This document is the result of the first iteration of the task “T5.3 – Simulated components 
network execution” activities. This task develops the simulator execution module as a part of 
the Simulation Tool of the THEAT-ARREST platform. Simulated cyber system components 
developed using the discrete event simulation engine Jasima1 will be used within THREAT-
ARREST where it is not possible or useful to fully emulate those components within the 
Emulation Tool (developed as part of the work package “WP2 – Emulation Tool”, see the 
deliverables “D2.1 – Emulated components’ generator module v1” and “D2.3 – Interlinking of 
emulated components module v1”). Examples of this include simulating human actors in a 
training session (like automated attackers trying to exploit a security problem), cases where 
special hardware is required (like a GPS sensor), or where a more abstract simulated 
representation of cyber system components is more appropriate than a very detailed 
representation using emulated software environments (e.g., a denial of service attack with a 
large number of real data packets sent in an emulated network versus a more abstract 
representation of a flow rate attribute between simulated network nodes being increased while 
an attack is ongoing). 

Task T5.3 is responsible for the execution of a network of simulated components integrated 
with emulated components within the Emulation Tool and the Data Fabrication Platform (DFP) 
developed within the task “T5.2 – Statistical profiling of real event logs and generation of 
synthetic events logs” of “WP5 – Simulation environment”. Work on this task is closely linked 
to task “T5.1 – Simulated components’ network generator” (see “D5.2 – Simulated components 
and network generator v1”). While T5.1 is more concerned with the structural side of specifying 
and creating the simulation model required for a Cyber Threat and Training Preparation (CTTP) 
model-based training, T5.3 is related to the dynamic aspects of executing the simulation as part 
of an ongoing training session. 

This task continuously collaborates with the Training and Visualisation components developed 
in work package “WP4 – Training and Visualization tools”. A simulation run will be started by 
the Training Tool, then the Jasima Visualization Tool (JVT) developed as part of “T4.1 – 
Visualization tools” (see “D4.1 – THREAT-ARREST visualization tools v1”) will be used to 
show the state of the cyber system comprised of simulated and emulated components during a 
training session. 

This document is structured as follows. Section 2 describes the way the Simulation Tool defines 
simulated component’s behaviour, allowing them to exchange messages/trigger events in other 
simulated components or in emulated components from the Emulation Tool of the THREAT-
ARREST platform. The connection of simulation and the DFP, used to generate synthetic 
security event logs, is also described. Section 3 shows the connection of this work to the 
execution of a CTTP model-driven training, documenting how a training program is executed 
by the various platform components based on this model. Finally, this document is concluded 
by Section 4 with a short summary and outlook towards the next tasks to be performed as part 
of T5.3. 

                                                 
1 The Jasima simulator: https://www.simplan.de/en/software-2/jasima/ 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 9 November 30, 2019 

2 Events management in the Simulation Tool 

2.1 Defining the behaviour of Simulated Components 
The general architecture of the Simulation Tool is shown in Figure 1, depicting its main 
components and data flows/connections to other components of the THREAT-ARREST 
platform (see the deliverables “D1.3 – THREAT-ARREST platform’s initial reference 
architecture” and “D5.3 – The Simulation component IO module v1” for more details). A 
central component in this architecture is the Simulation Controller managing the lifecycle of a 
simulation run (e.g. creating, starting, pausing, etc.) accessible via a Representational State 
Transfer (REST) Application Programming Interface (API). It is also responsible for 
interfacing the Simulation Tool with the platform’s RabbitMQ message broker to communicate 
events from the simulation to other platform components such as the Visualization or the 
Training Tool and to be able to receive events required for the succession of a simulation run. 
This message-broker-based communication is indicated in Figure 1 by the interfaces named 
Data Source Service. 

 

 
Figure 1 Simulation Tool architecture and external communications (see D1.3) 

Simulated Components for the THREAT-ARREST platform use the Jasima library developed 
by SimPlan, as the Simulation Engine of the Simulation Tool. Jasima is a software library for 
discrete-event simulation written in the Java Programming language. The components to be 
used for a certain training scenario are defined within the CTTP Simulation Sub-Model (see the 
deliverable “D3.3 – Reference CTTP Models and Programmes Specifications v1“) and finally 
submitted to the Simulation Controller as an Extensible Markup Language (XML) file. This 
file contains a hierarchy of simulation components with their specific parameter values to use. 
Internally, this maps to a tree of Java objects configured according to the needs of the scenario. 
This overall process is described more closely in the deliverable “D5.2 –Simulated Components 
and Network Generator v1”. 

All simulated components are therefore instances of a Java class. Therefore, they are Java 
objects that can have parameters (Java fields with getter/setter methods), can store simulation 
state in Java fields. Accordingly, the behaviour of components is defined in Java methods. 
Events sent between simulated components correspond to method calls, either by invoking them 
directly if they are supposed to occur at the same point in simulation time or indirectly via the 
simulation kernel that is responsible for executing events in the right temporal and logical order. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 10 November 30, 2019 

Restating information already contained in D5.2, the architecture of Jasima is shown in Figure 
2, providing a more detailed view on the architecture of the Simulation Engine component 
shown in Figure 1. The core of the library consists of the discrete-event simulation kernel itself 
(responsible for managing and executing simulation events in the right order) and functionality 
required by most simulation models (like loading/saving simulation models, statistical analysis 
functions, functions to generate random numbers using a large variety of statistical 
distributions, etc.). Building on this, basic modelling elements like queues and abstract servers 
are provided as building blocks to create more complex domain-specific packages of simulation 
components. The simulation components developed within THREAT-ARREST can be seen as 
an example of such a domain-specific package for the application domain of cyber-security 
training. The architecture of Jasima is flexible and can be extended on all levels as required. 
Furthermore, it can easily be integrated in other software, to create solutions not necessarily 
intended to be used by simulation experts. 

 
Figure 2 General architecture of the Jasima software library for discrete-event simulation (see D5.2) 

All classes (i.e. simulated component types) used by the training scenarios of the three 
THREAT-ARREST pilots, are defined in a component library. This component library is 
maintained in a git repository accessible to all THREAT-ARREST platform tools. To define 
completely new training scenarios or modify existing ones, this repository can be 
cloned/branched by training developers. Existing components from this library can then be used 
as a kind of blueprint to create additional components or modify existing ones. 

Within the THREAT-ARREST platform, simulated components will be used to model parts of 
the cyber-system that cannot easily be represented by emulated components. An example of 
such components would be to model human actors of a training session, e.g., to have simulated 
attackers trying to perform actions on emulated or simulated components in response to 
trainees’ action. 

Another use of simulated components is when replicating a real software environment in virtual 
machines (VMs) with the Emulation Tool would be very complex and the training scenario 
would not require the full complexity containing all details of a cyber system. In such a case, 
simulated components can provide an abstracted view on the system. For instance, train to 
detect and defend a distributed denial of service attack on a network, one could create a set of 
emulated components that actually send a large number of data packets in the emulated 
network. Instead, it might be sufficient to just define a set of simulated network nodes, 
specifying the communication links between them. The data rate exchanged between the nodes 
could then just be a set of state variables within the simulation. When an attack begins, these 
variables would just have to be increased, which could easily be shown in the Visualization 
Tool. Such a scenario would be much easier to set up and computationally far less demanding. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 11 November 30, 2019 

Whether this level of abstraction is sufficient for a certain training scenario depends very much 
on the target audience of a particular training session and the training goals of the scenario. 

2.2 Simulation Modelling/Execution by Example 
A simple example derived from the smart energy pilot is described in the following sections. It 
models a simple sensor as an example of a simulated component. The sensor has a current 
sensor value reading (a temperature reading). It furthermore has a state to indicate whether the 
sensor is working or in a failed state. 

 
Figure 3 Simulated Sensor Component (1/4) 

The component Sensor (see Figure 3) is derived from a base class NetworkNode (line 12). 
NetworkNode is a generic class from the component library defining common attributes of a 
network node. The sensor has a certain number of attributes (lines 20 and 21) and defines two 
variables to store the simulated inner state of a simulated sensor (lines 25 and 26). The fields 
defined in lines 28 and 29 use core functionality of the Simulation Engine to define random 
changes to the state variables. The two state variables state and currentTemperature are of type 
ObservableValue. This allows to store the current value and provide an efficient means to 
inform other components of changes to these values. 

 
Figure 4 Simulated Sensor Component (2/4) 

Before a simulation run starts, each component is initialized by calling it’s init() method. For 
the sensor example this method is shown in Figure 4. In lines 40 and 41 it first initializes the 
observable state variables to some initial values (state to INITIAL and currentTemperature to 
20.0). Lines 44 and 48 then use functionality of the core Jasima classes to define streams of 
random numbers that are used to modify a sensor’s state during the simulation run. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 12 November 30, 2019 

 
Figure 5 Simulated Sensor Component (3/4) 

How a sensor component behaves during a simulation run is shown in Figure 5. It shows the 
use of the method beforeRun which is used to schedule any initial simulation events before the 
simulation starts. In the example we define two processes periodically updating the state 
variables. The field currentTemperature is updated for the first time at time 0.0 and then every 
5 minutes (line 56).  The variable state is also first updated at time 0.0 and subsequently every 
7.5 minutes of simulation time (line 59). What happens during a temperature update is defined 
in the method changeTemperature() (lines 62-66 in Figure 5). The new value is calculated in 
line 64 as the old value plus some normally distributed random number. As a result, this creates 
a random walk with a linear trend to change the value of currentTemperature. Finally, the set-
method invoked in line 65 will set the new value. As currentTemperature is an observable 
value, this will automatically trigger value update messages via the message broker so all 
components interested in this value will be notified. 

 
Figure 6 Simulated Sensor Component (4/4) 

Similarly the method changeState() shown in Figure 6 is triggered every 7.5 minutes of 
simulated time to determine a new value of the state variable. 

 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 13 November 30, 2019 

 
Figure 7 Example use of the component in a training scenario 

The sensor component defined in this way can later on be used in a training scenario. Instances 
of this component type can be created and parameterized based on the CTTP simulation sub-
model. An example in Jasima’s internal XML format is shown in Figure 7. It is defining some 
general simulation parameters, like the simulation start time and the simulation length in lines 
2-8, before defining the hierarchy of simulation components starting in line 9. The simulation 
scenario scenario1 defined there contains an example network network1, containing a number 
of sensor components. Each sensor is configured using a set of parameters, e.g., tempSlope and 
tempVariance.  

The state variables currentTemperature and state can be observed by other THREAT-ARREST 
platform components. For instance, the Visualization Tool relies on this to be able to provide 
an up-to-date view on the state of the cyber system. In the example visualization view shown 
in Figure 8 (figure from “D4.1 – THREAT-ARREST visualization tools v1”) the Visualization 
Tool subscribed to the values of 5 simulated sensors and always shows their most recent 
currentTemperature value graphically as bar/column charts. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 14 November 30, 2019 

 
Figure 8 Example Visualization View of the JVT Showing the State of Simulated Sensors 

2.3 Executing real and synthetic event logs 
To support the THREAT-ARREST requirements, the IBM’s Data Fabrication Platform (DFP) 
has been enhanced with the ability to generate sequences of simulated cyber-events in general, 
and synthetic security event log files in particular (see task T5.1 and D5.2). For such a case, the 
DFP needs to be properly initialized (based on definitions found in a CTTP model) before a 
user or a client sub-system can get any synthetic log file. 

First, a virtual Computer Network topology should be defined. This includes declaration of 
network-attached computers, switches and other relevant hardware. Each hardware node should 
be augmented with properties and “installed” software applications and services. User-provided 
rules and constraints should complement the network definition to guide the fabrication engine, 
how to choose values for hardware and software properties. 

Then, an Event Scenario, built of connected Actions and Activities, should be defined. In case 
a cyber-attack log is required, an attack Scenario should be defined over the virtual Network. 
After being properly configured with the Network topology and the Scenario definition, DFP 
creates a Constraint Satisfaction Problem (CSP) based on those definitions, solves the Problem 
with the CSP Solver, producing pseudo-random property and function call parameter values, 
satisfying all the definitions, rules and constraints. Finally, DFP simulates the Scenario, calling 
in application functions, declared by the Scenario actions, propagating events from one network 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 15 November 30, 2019 

node to another, and stores the resulting event messages down to some persistent storage, 
producing event log files. 

To connect a simulation with the DFP, the special simulation component Event Trace Importer 
(see Figure 1) will be used. The concept of the current prototype version of the component will 
be described here. When a first integrated version of the THREAT-ARREST platform is 
operational, this component will be thoroughly tested and refined. 

As input to the Event Trace Importer, we expect data from three main sources: 

1. Synthetic log files prefabricated for a training scenario by the DFP 

2. Synthetic log files generated by the DFP dynamically during a training session  

3. Real event logs from attacks to “replay” them. 

From a simulation perspective, cases 1 and 3 would be very similar with the log files being 
available as static input files (e.g. from a git repository). Case 2 would use the REST API of the 
DFP to generate synthetic log files dynamically (see D5.3). 

Event traces / logs are assumed to be textual data consisting of one line per event. Each event 
is characterised by a timestamp and a list of values defining the type of the event along with 
additional parameters characterizing it. An example of such a log file taken from Section 2.2. 
of D5.1 is shown below: 

The Trace File Importer now reads such a log file line by line. Currently this log file has to be 
accessible as a file on the computer running the simulation. In future versions also accessing 
the log via the REST API of the DFP will be supported. 

Each line is parsed in order to split the various fields of information contained in it. Each 
line/event must have at least a timestamp and a type specifier. For each event contained in the 
log file an event is scheduled in the simulation. When the simulation time reaches this point in 
time, a handling method depending on the type of the event is invoked given the full details of 
the event as contained in the log file. This handling method is then responsible to trigger 
appropriate actions in a scenario-specific way. Such actions can include: 

 trigger events/actions in other simulated components 

 trigger events/actions in emulated components in the Emulation Tool 

 directly send platform messages via the message broker to be consumed by, e.g., the 
Training or the Visualization Tool. 

A simulation scenario can contain one or more Event Trace Importers. Each Event Trace 
Importer is expected to handle a single event log. Both the format of the log file and the actions 
to be triggered are assumed to be scenario-specific. Therefore, new classes to parse log entries 

Client Computer log 

<22>1 2019-06-20T10:12:43.341Z client.victimnet.net IBM Mail Client App 1.0 - Login [UserInfo 
Username="victim"] User logged in 

<22>1 2019-06-20T16:25:18.197Z client.victimnet.net IBM Mail Client App 1.0 - Receive mail [Mail 
Sender="attacker@attackerdomain.com" Recipient="victim@victimdomain.com" Subject="This is a 
phishing mail!!!" Attachment="trojan_horse.exe"] Mail received 

<14>1 2019-06-20T16:28:47.813Z client.victimnet.net IBM Client Computer File System 1.0 - File 
save [File Filename="trojan_horse.exe"] 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 16 November 30, 2019 

and classes to handle parsed events can be defined in the component library of the Simulation 
Tool, so that the Event Trace Importer can be configured appropriately. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 17 November 30, 2019 

3 Connection to CTTP 
In this Section, we link our contributions so far and present how we monitor the trainee’s actions 
and his/her interaction with the simulated components (e.g. (Alexandris et al., 2018; 
Hatzivasilis et al., 2019a; Hatzivasilis et al., 2019b; Hatzivasilis et al., 2017; Soultatos et al., 
2019; Cesena et al.; 2017)). Firstly, we refer to the example from the deliverable D5.2 where 
we instantiate a simulated network based on the CTTP model (documented in “D3.2 – CTTP 
Models and Programmes Specification Tool”). Then, we describe the main architecture of the 
Simulation Tool (based on D1.3) as well as how it captures the trainee’s actions and exchanges 
this information with the rest of the tools (based on D5.3). Finally, we combine all the above in 
order to present how the Training Tool receives the actual trace of the trainee’s actions from 
the Simulation Tool at runtime and evaluates his/her performance on a specific training scenario 
(i.e. GPS spoofing). This is done via the expected-trace, which constitutes the set of the correct 
actions that must be performed in this specific scenario and is included in the related CTTP 
model. 

3.1 Instantiating a simulated network 
In the deliverable D5.2, we describe how to instantiate a network of simulated components for 
the smart shipping scenario based on the CTTP simulation sub-model. There, we determine the 
PAL/SAL and Hardware components of a smart vessel and how to instantiate the on-deck 
navigation equipment. In short, we have three different simulated navigation modules – 
compass, GPS, and live-maps – which capture the current position of the ship and present 
relevant measurements to the user at each simulated time point. The operational condition of 
the three modules is determined during the scenario initialization via the instantiation script 
(part of the CTTP simulation sub-model) and can be normal or faulty, while the GPS and live-
maps could also be compromised by a malicious entity. 

The next figure depicts the related UML class diagram for the navigation equipment and the 
main developed class attributes and methods. 

 
Figure 9 The UML class diagram of the simulated on-deck equipment (Source D5.2) 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 18 November 30, 2019 

The following piece of code, taken from D5.2, describes an example instantiation script that we 
use in order to build the simulation of the on-deck equipment. The component and 
subcomponent elements reflect directly to the Java classes of a simulated component (see 
Section 2.2) and their attributes. We create a deck which is consisted by a faulty GPS 
equipment, along with a compass and the live-map modules that work properly. The 
subcomponent description determines the simulated component’s constructor (in Java) that will 
be called. GPS is instantiated as ‘faulty’, while the default behaviour of the other two 
components, which is implemented by the default constructor (without input arguments), is the 
normal operation. 

 

Via the model-driven approach that is promoted by the THREAT-ARREST platform, we can 
create CTTP models that capture all the different states of the three navigation monitors and 
their combinations (covering various learning goals and training difficulty levels). The CTTP 
models are established via the CTTP editor (D3.2) and are maintained locally in a platform 
repository. 

Through the Dashboard, the trainee can select and activate the simulated scenario. The Training 
Tool retrieves the instantiation script (from one of the underlying CTTP models of this scenario) 
and configures the Simulation Tool accordingly (D5.2-D5.3). When the simulation is up and 
running, the trainee is notified and can interact with the simulated components via the modules 
of the Visualization Tool. For more details, refer to the deliverables D5.2 and D5.3. 

The main actions that we model here, is the monitoring of the navigation measurements/values 
of the tree modules by the trainee and the choice to suspend the interaction of a module with 
the navigation system. 

 By default, the ship is automatically navigated by the GPS. 

 If the GPS is suspended, the ship is navigating via the information from the LiveMap. 

 If both GPS and LiveMap are suspended, the ship is navigated with the use of the 
compass. 

<Instantiation> 
<tool>Simulation</tool> 
<template_name>NO</template_name> 
<installation_script> 

<file_name>DCC-sim-scenario.xml</file_name> 
<duration>10<duration> 
<component>Deck</component> 

<subcomponent-list> 
 <subcomponent> 
  <name>GPS</name> 

<isFaulty>true</isFaulty> 
<isCompromised>false</isCompromised> 
<localLog>’the navigation log with fabricated events that are reported’</localLog > 

   </subcomponent> 
<subcomponent> 

  <name>Compass</name> 
   </subcomponent> 

<subcomponent> 
  <name>LiveMap</name> 

   </subcomponent> 
</subcomponent-list> 

</installation_script> 
</Instantiation> 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 19 November 30, 2019 

 If all modules are suspended, we consider that the emergency authorities are informed 
about and the captain navigates the ship manually based on what he/she sees from the 
deck. 

Thus, the trainee has to correlate the measurements of the three monitors and figure out if some 
modules do not work properly and make the correct navigation choices. 

3.2 Capturing and reporting the simulation events 
The architecture of the Simulation Tool along with its main sub-components and their operation 
is presented in the deliverable D1.3 and was already recalled briefly in Section 2.1. For a more 
in-depth description of the main interconnections of the Simulation Tool with the rest of the 
platform’s tools the reader is referred to D5.3. 

As can be seen in Figure 1, the main interaction point is the Simulation Controller. It gets as 
input the information of the CTTP simulation sub-model, instantiates the simulation, monitors 
the operation of the simulated components, and reports ongoing events to the other tools. 

The eventing mechanism is described in the deliverable D5.3. This asynchronous 
communication is enabled via the RabbitMQ message broker. The Simulation Tool publishes 
the upcoming events to its predefined Exchange, to which the related tools (i.e. Training and 
Visualization Tools) have been subscribed in order to get notified. It is agreed that all these 
messages bear a well formed routing key that complies the following structure: 

Next, we extended the offered operation of the Jasima simulator (D5.2/D5.3) in order to capture 
the changes of the simulated components as time progresses and update the Exchange. This 
functionality is implemented by the ReceiveSimVisUserActions class. An example message that 
indicates the current GPS coordinates as they are reported by the GPS module would look like 
this: 

The event is parsed by the Visualization Tool which presents this information to the trainee. 
For more details, refer to the deliverable D5.3 and D4.1, respectively. 

3.3 Trainee’s evaluation 
In this deliverable (D5.4), we describe how we can monitor the trainee’s actions on the 
simulated components and report the actual interaction trace back to the Training Tool, which 
starts the simulation and maintains the status of the overall training procedure. Except from the 
instantiating information, a full CTTP model (which is documented in the deliverable D3.2) 
determines which is the expected-trace that must be followed by the trainee in order to consider 
that he/she has performed the required actions for the specific simulated scenario (i.e. suspend 
the operation of the navigation tools that do not work properly or turn to manual operation if 
all three modules are faulty or compromised). 

SimulationTool.<ScenarioID>.<TrainingSessionID>[.<CyberSystemComponentID>]+.<CyberSystemC
omponentAttributeID> 

{ 
   "simTime":1500, 
   "simTimeAbs":"2019-10-28T20:00:39.638Z", 
   "wallTime":1564432617032, 
   "valueName":"scenario1.ShipMain.Deck.GPS.getGPS", 
   "gps":35.341846,25.148254 
} 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 20 November 30, 2019 

The following piece of code presents the expected-trace for the referred example where the 
GPS is faulty and must be suspended. 

Thus, if the trainee presses the related button in the Visualization Tool, the method ‘void 
suspendOperation()’ is performed by the underlying GPS object and the object 
ReceiveSimVisUserActions updates the simulation’s Exchange with the following event: 

Then, the Training Tool correlates the upcoming event with the entry in the expected-trace and 
signifies that the correct action has been performed by this trainee (in this example, once a 
navigation module is suspended, it cannot be reactivated throughout the simulation). 

In general, the expected-trace can be much more complex in order to represent various event 
sequences. The full supported functionality is detailed in the deliverable D3.2. 

3.4 Summary of the steps for the model-driven training process 
The overall steps of the CTTP model-driven process for this simulated scenario are summarized 
below: 

- The instantiation script specifies (retrieved by the Training Tool and passed to the 
Simulation Tool): 

o the Java objects and their connections that will be instantiated and simulated (the 
on-ship deck with the three underlying monitors) 

o that status of the three monitors (compass, GPS, and live-maps) by setting the 
parameters of their constructors. 

- The expected-trace specifies the set of the correct actions that the trainee must perform: 

o for each of the three modules that has been instantiated as faulty or 
compromised, there is one relevant entry in the trace 

o the trainee must deactivate each faulty/compromised equipment from the 
navigation service by pressing a button that performs the method ‘void 
suspendOperation()’ in the relevant EquipmentMonitor object (superclass of the 
classes GPS, Compass, and LiveMap, see Σφάλμα! Το αρχείο προέλευσης της 
αναφοράς δεν βρέθηκε.) 

o via the class ReceiveSimVisUserActions, the Simulation Controller captures all 
the monitored trainee’s actions and updates the Exchange of this simulation 
instance 

 the Visualization Tool has been subscribed in this Exchange and presents 
the navigation values of the three modules to the trainee 

 the Training Tool has been subscribed in this Exchange and collects all 
the updates of the trainee’s actual trace: 

<expected-trace> 
<valueName>scenario1.ShipMain.Deck.GPS.suspendOperation</valueName> 

</ expected-trace > 

{ 
   "simTime":1500, 
   "simTimeAbs":"2019-10-28T20:00:39.638Z", 
   "wallTime":1564432617032, 
   "valueName":"scenario1.ShipMain.Deck.GPS.suspendOperation" 
} 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 21 November 30, 2019 

 if one of these actions is also contained in the expected-trace of 
the running CTTP model (i.e. the deactivation of a 
faulty/compromised component), the Training Tool signifies that 
the trainee has perform a correct action 

- When the simulation training process is over, the Training Tool evaluates the trainee’s 
performance and updates his/her record in the THREAT-ARREST platform. 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 22 November 30, 2019 

4 Conclusion 
This document presented the work done as part of the task T5.3 from month 4 until month 15. 
In Section 2, it described how the behaviour of simulated components is defined in Jasima – 
the discrete-event simulation library used as the core of the Simulation Tool of the THREAT-
ARREST platform. Then, Section 3 first recalled the connection of the Simulation Tool to the 
CTTP-model and described in the main part the execution logic of a training session, integrating 
multiple components of the THREAT-ARREST platform to create a coherent view on the cyber 
system for trainees. 

Next steps in T5.3 will be driven on one hand, by the integration of the Simulation Tool towards 
the first integrated version of the THREAT-ARREST platform due in month 20 (to be 
documented in “D6.1 – Initial Prototype of Integrated THREAT-ARREST platform”). 
Furthermore, for the three THREAT-ARREST pilots additional simulated components will be 
implemented. They will make use of the basic functionality as described here but use them to 
create more complex/realistic behaviour of simulated components as required by the pilot’s 
training scenarios. 

 



TREAT-ARREST D5.4 DS-SC7-2017/№ 786890
 

THREAT-ARREST 23 November 30, 2019 

References 
[1] Alexandris, G., et al., 2018. Blockchains as enablers for auditing cooperative circular 

economy networks. 23rd IEEE International Workshop on Computer Aided Modeling 
and Design of Communication Links and Networks (CAMAD 2018), IEEE, Barcelona, 
Spain, 17-19 September 2018, pp. 1-7. 

[2] Cesena, M., et al. 2017. SHIELD Technology Demonstrators. CRC Press, Book for 
Measurable and Composable Security, Privacy, and Dependability for Cyberphysical 
Systems, pp. 381-434. 

[3] Hatzivasilis, G., et al., 2019a. The CE-IoT Framework for Green ICT Organizations. 1st 
International Workshop on Smart Circular Economy (SmaCE), Santorini Island, 
Greece, 30 May 2019, IEEE, pp. 1-7. 

[4] Hatzivasilis, G., et al., 2019b. MobileTrust: Secure Knowledge Integration in VANETs. 
ACM Transactions on Cyber-Physical Systems – Special Issue on User-Centric Security 
and Safety for Cyber-Physical Systems, ACM, vol. 4, issue 3, Article no. 33, pp. 1-15. 

[5] Hatzivasilis, G., et al., 2017. Real-time management of railway CPS. 5th 
EUROMICRO/IEEE Workshop on Embedded and Cyber-Physical Systems (ECYPS 
2017), IEEE, Bar, Montenegro, 11-15 June 2017. 

[6] Soultatos, O., et al., 2019. Pattern-Driven Security, Privacy, Dependability and 
Interoperability Management of IoT Environments. 24th IEEE International Workshop 
on Computer Aided Modeling and Design of Communication Links and Networks 
(CAMAD 2019), IEEE, Limassol, Cyprus, 11-13 September 2019, pp. 1-6 


